High Mobilities in Layered InSe Transistors with Indium-Encapsulation-Induced Surface Charge Doping
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 44 vom: 27. Nov., Seite e1803690 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D electronics InSe transistors logic circuits low‐frequency noise surface charge transfer doping |
Zusammenfassung: | © 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. Tunability and stability in the electrical properties of 2D semiconductors pave the way for their practical applications in logic devices. A robust layered indium selenide (InSe) field-effect transistor (FET) with superior controlled stability is demonstrated by depositing an indium (In) doping layer. The optimized InSe FETs deliver an unprecedented high electron mobility up to 3700 cm2 V-1 s-1 at room temperature, which can be retained with 60% after 1 month. Further insight into the evolution of the position of the Fermi level and the microscopic device structure with different In thicknesses demonstrates an enhanced electron-doping behavior at the In/InSe interface. Furthermore, the contact resistance is also improved through the In insertion between InSe and Au electrodes, which coincides with the analysis of the low-frequency noise. The carrier fluctuation is attributed to the dominance of the phonon scattering events, which agrees with the observation of the temperature-dependent mobility. Finally, the flexible functionalities of the logic-circuit applications, for instance, inverter and not-and (NAND)/not-or (NOR) gates, are determined with these surface-doping InSe FETs, which establish a paradigm for 2D-based materials to overcome the bottleneck in the development of electronic devices |
---|---|
Beschreibung: | Date Completed 03.01.2019 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201803690 |