Characterization of SiGe thin films using a laboratory X-ray instrument
The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a...
Veröffentlicht in: | Journal of applied crystallography. - 1998. - 46(2013), Pt 4 vom: 01. Aug., Seite 898-902 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | Journal of applied crystallography |
Schlagworte: | Journal Article high-resolution reciprocal space mapping misfit dislocation partly relaxed epitaxial films thin films |
Zusammenfassung: | The technique of reciprocal space mapping using X-rays is a recognized tool for the nondestructive characterization of epitaxial films. X-ray scattering from epitaxial Si0.4Ge0.6 films on Si(100) substrates using a laboratory X-ray source was investigated. It is shown that a laboratory source with a rotating anode makes it possible to investigate the material parameters of the super-thin 2-6 nm layers. For another set of partially relaxed layers, 50-200 nm thick, it is shown that from a high-resolution reciprocal space map, conditioned from diffuse scattering on dislocations, it is possible to determine quantitatively from the shape of a diffraction peak (possessing no thickness fringes) additional parameters such as misfit dislocation density and layer thickness as well as concentration and relaxation |
---|---|
Beschreibung: | Date Revised 21.10.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 0021-8898 |