Nonvolatile Logic and Ternary Content-Addressable Memory Based on Complementary Black Phosphorus and Rhenium Disulfide Transistors
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 48 vom: 14. Dez., Seite e2106321 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Schmidt-like flip-flop black phosphorus nonvolatile logic rhenium disulfide ternary content-addressable memory |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. Hardware realization of in-memory computing for efficient data-intensive computation is regarded as a promising paradigm beyond the Moore era. However, to realize such functions, the device structure using traditional Si complementary metal-oxide-semiconductor (CMOS) technology is complex with a large footprint. 2D material-based heterostructures have a unique advantage to build versatile logic functions based on novel heterostructures with simplified device footprint and low power. Here, by adopting the charge-trapping mechanism between a black phosphorus (BP) channel and a phosphorus oxide (POx ) layer, a nonvolatile CMOS logic circuit based on 2D BP and rhenium disulfide (ReS2 ) with a high voltage gain of ≈275 is realized with a persistent hysteresis window. A Schmidt-like flip-flop using only two transistors is also demonstrated, with far fewer transistor numbers than the conventional silicon counterpart, which usually requires six transistors. Furthermore, four-transistor (4T) nonvolatile ternary content-addressable memory (nvTCAM) cells are demonstrated with far fewer transistors for parallel data search. The nvTCAM cells exhibit high resistance ratios (Rratio ) up to ≈103 between match and mismatch states with zero standby power thanks to the nonvolatility of the BP transistors. This back-end-of-line compatible nvTCAM shows advantages over other structures with reduced complexity and thermal budget |
---|---|
Beschreibung: | Date Revised 01.12.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202106321 |