Design of experiment for optimization of plasma-polymerized octafluorocyclobutane coating on very high aspect ratio silicon molds

As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold ca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 24 vom: 21. Nov., Seite 10196-203
1. Verfasser: Yeo, L P (VerfasserIn)
Weitere Verfasser: Yan, Y H, Lam, Y C, Chan-Park, Mary B
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Biocompatible Materials Chlorofluorocarbons Chlorofluorocarbons, Methane Coated Materials, Biocompatible Dimethylpolysiloxanes Nylons poly(dimethylsiloxane)-polyamide copolymer Fluorine mehr... 284SYP0193 octafluorocyclobutane V9P1D0A21K Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:As-fabricated deep reactive ion etched (DRIE) silicon mold with very high aspect ratio (>10) feature patterns is unsuitable for poly(dimethylsiloxane) (PDMS) replication because of the strong interaction between the Si surface and the replica and the corrugated mold sidewalls. The silicon mold can be conveniently passivated via plasma polymerization of octafluorocyclobutane (C4F8), which is also employed in the DRIE process itself, to enable the mold to be used repeatedly. To optimize the passivation conditions, we have undertaken a Box-Behnken experimental design on the basis of three passivation process parameters (plasma power, C4F8 flow rate, and deposition time). The measured responses were fluorinated film thickness, demolding status/success, demolding force, and fluorine/carbon ratio on the fifth replica surface. The optimal passivation process conditions were predicted to be an input power of 195 W, a C4F8 flow rate of 57 sccm, and a deposition time of 364 s; these were verified experimentally to have high accuracy. Demolding success requires medium-deposited film thickness (66-91 nm), and the thickness of the deposited films correlated strongly with deposition time. At moderate to high ranges, increased plasma power or gas flow rate promoted polymerization over reactive etching of the film. It was also found that small quantities of the fluorinated surface were transferred from the Si mold to the PDMS at each replication, entailing progressive wear of the fluorinated layer
Beschreibung:Date Completed 13.03.2007
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827