Revisiting Siamese-Based 3D Single Object Tracking With a Versatile Transformer

3D Single Object Tracking (SOT) plays an important role in real-world visual applications such as autonomous driving and planning. How to realize effective 3D SOT is still a valuable challenge due to its carrier-sparse point clouds and its role-complex influencing factors. Inspired by the remote mod...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 47(2025), 9 vom: 18. Aug., Seite 8148-8164
1. Verfasser: Liu, Jiaming (VerfasserIn)
Weitere Verfasser: Wu, Yue, Miao, Qiguang, Gong, Maoguo, Kong, Linghe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2025
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM390665061
003 DE-627
005 20250807232111.0
007 cr uuu---uuuuu
008 250806s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2025.3581381  |2 doi 
028 5 2 |a pubmed25n1523.xml 
035 |a (DE-627)NLM390665061 
035 |a (NLM)40536838 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Jiaming  |e verfasserin  |4 aut 
245 1 0 |a Revisiting Siamese-Based 3D Single Object Tracking With a Versatile Transformer 
264 1 |c 2025 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2025 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D Single Object Tracking (SOT) plays an important role in real-world visual applications such as autonomous driving and planning. How to realize effective 3D SOT is still a valuable challenge due to its carrier-sparse point clouds and its role-complex influencing factors. Inspired by the remote modeling of popular transformers, we further propose a Versatile Point Tracking Transformer (VPTT) method for 3D SOT, with object guidance from the template point cloud to the search area point cloud under the siamese-based tracking paradigm. Specifically, VPTT employs self- and cross- attention mechanisms and extends four matching operations, resulting in leveraging the contextual information of consecutive frames to improve the tracking results. By constructing a deep network VerFormer consisting of four successive transformer layers, which performs matching operations involving fusional transformation, separative discrimination, intersectional interaction, and unidirectional propagation from shallow to deep. Considering that the tracking task involves multiple processes, VPTT further learns how to forecast intermediate outputs including mask probability, trailing distance, and heading angle at each stage. Such a specialized design allows our VPTT to revisit the end-to-end training paradigm used for 3D tracking while developing a versatile transformer that is a perfect fit for the 3D SOT task. Experiments on three benchmarks, KITTI, nuScenes, and Waymo, show that VPTT achieves state-of-the-art tracking performance on siamese-based tracking running at $\sim$∼62 FPS 
650 4 |a Journal Article 
700 1 |a Wu, Yue  |e verfasserin  |4 aut 
700 1 |a Miao, Qiguang  |e verfasserin  |4 aut 
700 1 |a Gong, Maoguo  |e verfasserin  |4 aut 
700 1 |a Kong, Linghe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 47(2025), 9 vom: 18. Aug., Seite 8148-8164  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:47  |g year:2025  |g number:9  |g day:18  |g month:08  |g pages:8148-8164 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2025.3581381  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 47  |j 2025  |e 9  |b 18  |c 08  |h 8148-8164