Single-Atom-Layer Metallization of Plasmonic Semiconductor Surface for Selectively Enhancing IR-Driven Photocatalytic Reduction of CO2 into CH4

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 20. Nov., Seite e2413931
1. Verfasser: Lu, Na (VerfasserIn)
Weitere Verfasser: Jiang, Xiaoyi, Zhu, Yongan, Yu, Linqun, Du, Shiwen, Huang, Jindou, Zhang, Zhenyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CH4 selectivity CO2 reduction photocatalysis plasmonic semiconductor single‐atom‐layer metallization
LEADER 01000naa a22002652 4500
001 NLM380510901
003 DE-627
005 20241120233411.0
007 cr uuu---uuuuu
008 241120s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202413931  |2 doi 
028 5 2 |a pubmed24n1607.xml 
035 |a (DE-627)NLM380510901 
035 |a (NLM)39564689 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Na  |e verfasserin  |4 aut 
245 1 0 |a Single-Atom-Layer Metallization of Plasmonic Semiconductor Surface for Selectively Enhancing IR-Driven Photocatalytic Reduction of CO2 into CH4 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Efficient harvesting and utilization of abundant infrared (IR) photons from sunlight is crucial for the industrial application of photocatalytic CO2 reduction. Plasmonic semiconductors have significant potential in absorbing low-energy IR photons to generate energetic hot electrons. However, modulating these hot electrons to selectively enhance the activity of CO2 reduction into CH4 remains a challenge. Herein, the study proposes a single-atom-layer (SAL) metallization strategy to enhance the generation of IR-driven hot electrons and facilitate their transfer from plasmonic semiconductors to CO2 for producing CH4. This strategy is demonstrated using a paradigmatic W18O49W-Sn nanowire array (NWA), where Sn2+ ions are grafted onto exposed O atoms on the surface of plasmonic W18O49 to form a surface W-Sn SAL. The incorporation of Sn single atoms enhances plasmonic absorption in IR light for W18O49 NWA. The W-Sn SAL not only promotes CO2 adsorption and reduces its reaction activation energy barrier but also shifts the endoergic CO-protonation process toward an exoergic reaction pathway. Thus, the W18O49@W-Sn NWA exhibits >98% selectivity for IR-driven CO2 reduction to CH4 with an activity over 9.0 times higher than that of bare W18O49 NWA. This SAL metallization strategy can also be applied to other plasmonic semiconductors for selectively enhancing CO2-to-CH4 reduction reactions 
650 4 |a Journal Article 
650 4 |a CH4 selectivity 
650 4 |a CO2 reduction 
650 4 |a photocatalysis 
650 4 |a plasmonic semiconductor 
650 4 |a single‐atom‐layer metallization 
700 1 |a Jiang, Xiaoyi  |e verfasserin  |4 aut 
700 1 |a Zhu, Yongan  |e verfasserin  |4 aut 
700 1 |a Yu, Linqun  |e verfasserin  |4 aut 
700 1 |a Du, Shiwen  |e verfasserin  |4 aut 
700 1 |a Huang, Jindou  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhenyi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 20. Nov., Seite e2413931  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:20  |g month:11  |g pages:e2413931 
856 4 0 |u http://dx.doi.org/10.1002/adma.202413931  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 20  |c 11  |h e2413931