Single-Atom-Layer Metallization of Plasmonic Semiconductor Surface for Selectively Enhancing IR-Driven Photocatalytic Reduction of CO2 into CH4

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 20. Nov., Seite e2413931
1. Verfasser: Lu, Na (VerfasserIn)
Weitere Verfasser: Jiang, Xiaoyi, Zhu, Yongan, Yu, Linqun, Du, Shiwen, Huang, Jindou, Zhang, Zhenyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CH4 selectivity CO2 reduction photocatalysis plasmonic semiconductor single‐atom‐layer metallization
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Efficient harvesting and utilization of abundant infrared (IR) photons from sunlight is crucial for the industrial application of photocatalytic CO2 reduction. Plasmonic semiconductors have significant potential in absorbing low-energy IR photons to generate energetic hot electrons. However, modulating these hot electrons to selectively enhance the activity of CO2 reduction into CH4 remains a challenge. Herein, the study proposes a single-atom-layer (SAL) metallization strategy to enhance the generation of IR-driven hot electrons and facilitate their transfer from plasmonic semiconductors to CO2 for producing CH4. This strategy is demonstrated using a paradigmatic W18O49W-Sn nanowire array (NWA), where Sn2+ ions are grafted onto exposed O atoms on the surface of plasmonic W18O49 to form a surface W-Sn SAL. The incorporation of Sn single atoms enhances plasmonic absorption in IR light for W18O49 NWA. The W-Sn SAL not only promotes CO2 adsorption and reduces its reaction activation energy barrier but also shifts the endoergic CO-protonation process toward an exoergic reaction pathway. Thus, the W18O49@W-Sn NWA exhibits >98% selectivity for IR-driven CO2 reduction to CH4 with an activity over 9.0 times higher than that of bare W18O49 NWA. This SAL metallization strategy can also be applied to other plasmonic semiconductors for selectively enhancing CO2-to-CH4 reduction reactions
Beschreibung:Date Revised 20.11.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.202413931