Magnetic Field-Induced Polar Order in Monolayer Molybdenum Disulfide Transistors

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 52 vom: 01. Dez., Seite e2411393
1. Verfasser: Hao, Duxing (VerfasserIn)
Weitere Verfasser: Chang, Wen-Hao, Chang, Yu-Chen, Liu, Wei-Tung, Ho, Sheng-Zhu, Lu, Chen-Hsuan, Yang, Tilo H, Kawakami, Naoya, Chen, Yi-Chun, Liu, Ming-Hao, Lin, Chun-Liang, Lu, Ting-Hua, Lan, Yann-Wen, Yeh, Nai-Chang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article MoS2 field‐effect transistor hysteresis lattice expansion polar order
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
In semiconducting monolayer transition metal dichalcogenides (ML-TMDs), broken inversion symmetry and strong spin-orbit coupling result in spin-valley lock-in effects so that the valley degeneracy may be lifted by external magnetic fields, potentially leading to real-space structural transformation. Here, magnetic field (B)-induced giant electric hysteretic responses to back-gate voltages are reported in ML-MoS2 field-effect transistors (FETs) on SiO2/Si at temperatures < 20 K. The observed hysteresis increases with |B| up to 12 T and is tunable by varying the temperature. Raman spectroscopic and scanning tunneling microscopic studies reveal significant lattice expansion with increasing |B| at 4.2 K, and this lattice expansion becomes asymmetric in ML-MoS2 FETs on rigid SiO2/Si substrates, leading to out-of-plane mirror symmetry breaking and the emergence of a tunable out-of-plane ferroelectric-like polar order. This broken symmetry-induced polarization in ML-MoS2 shows typical ferroelectric butterfly hysteresis in piezo-response force microscopy, adding ML-MoS2 to the single-layer material family that exhibits out-of-plane polar order-induced ferroelectricity, which is promising for such technological applications as cryo-temperature ultracompact non-volatile memories, memtransistors, and ultrasensitive magnetic field sensors. Moreover, the polar effect induced by asymmetric lattice expansion may be further generalized to other ML-TMDs and achieved by nanoscale strain engineering of the substrate without magnetic fields
Beschreibung:Date Revised 28.12.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202411393