Magnetic Field-Induced Polar Order in Monolayer Molybdenum Disulfide Transistors
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 52 vom: 01. Dez., Seite e2411393 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article MoS2 field‐effect transistor hysteresis lattice expansion polar order |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. In semiconducting monolayer transition metal dichalcogenides (ML-TMDs), broken inversion symmetry and strong spin-orbit coupling result in spin-valley lock-in effects so that the valley degeneracy may be lifted by external magnetic fields, potentially leading to real-space structural transformation. Here, magnetic field (B)-induced giant electric hysteretic responses to back-gate voltages are reported in ML-MoS2 field-effect transistors (FETs) on SiO2/Si at temperatures < 20 K. The observed hysteresis increases with |B| up to 12 T and is tunable by varying the temperature. Raman spectroscopic and scanning tunneling microscopic studies reveal significant lattice expansion with increasing |B| at 4.2 K, and this lattice expansion becomes asymmetric in ML-MoS2 FETs on rigid SiO2/Si substrates, leading to out-of-plane mirror symmetry breaking and the emergence of a tunable out-of-plane ferroelectric-like polar order. This broken symmetry-induced polarization in ML-MoS2 shows typical ferroelectric butterfly hysteresis in piezo-response force microscopy, adding ML-MoS2 to the single-layer material family that exhibits out-of-plane polar order-induced ferroelectricity, which is promising for such technological applications as cryo-temperature ultracompact non-volatile memories, memtransistors, and ultrasensitive magnetic field sensors. Moreover, the polar effect induced by asymmetric lattice expansion may be further generalized to other ML-TMDs and achieved by nanoscale strain engineering of the substrate without magnetic fields |
---|---|
Beschreibung: | Date Revised 28.12.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202411393 |