|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM373502257 |
003 |
DE-627 |
005 |
20240815232333.0 |
007 |
cr uuu---uuuuu |
008 |
240612s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202403743
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1502.xml
|
035 |
|
|
|a (DE-627)NLM373502257
|
035 |
|
|
|a (NLM)38862115
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Maguang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Inner Doping of Carbon Nanotubes with Perovskites for Ultralow Power Transistors
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 15.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Semiconducting carbon nanotubes (CNTs) are considered as the most promising channel material to construct ultrascaled field-effect transistors, but the perfect sp2 C─C structure makes stable doping difficult, which limits the electrical designability of CNT devices. Here, an inner doping method is developed by filling CNTs with 1D halide perovskites to form a coaxial heterojunction, which enables a stable n-type field-effect transistor for constructing complementary metal-oxide-semiconductor electronics. Most importantly, a quasi-broken-gap (BG) heterojunction tunnel field-effect transistor (TFET) is first demonstrated based on an individual partial-filling CsPbBr3/CNT and exhibits a subthreshold swing of 35 mV dec-1 with a high on-state current of up to 4.9 µA per tube and an on/off current ratio of up to 105 at room temperature. The quasi-BG TFET based on the CsPbBr3/CNT coaxial heterojunction paves the way for constructing high-performance and ultralow power consumption integrated circuits
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 1D coaxial heterojunction
|
650 |
|
4 |
|a carbon nanotube
|
650 |
|
4 |
|a inner doping
|
650 |
|
4 |
|a perovskite
|
650 |
|
4 |
|a quasi‐broken‐gap (BG)
|
650 |
|
4 |
|a tunnel field‐effect transistor
|
700 |
1 |
|
|a Yin, Huimin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Jiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Peng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ding, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Chenwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Haiyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yuanfang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Yizheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Lian-Mao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Chuanhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zhiyong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 33 vom: 27. Aug., Seite e2403743
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:33
|g day:27
|g month:08
|g pages:e2403743
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202403743
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 33
|b 27
|c 08
|h e2403743
|