PCKRF : Point Cloud Completion and Keypoint Refinement With Fusion Data for 6D Pose Estimation

Some robust point cloud registration approaches with controllable pose refinement magnitude, such as ICP and its variants, are commonly used to improve 6D pose estimation accuracy. However, the effectiveness of these methods gradually diminishes with the advancement of deep learning techniques and t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 17. Apr.
1. Verfasser: Han, Yiheng (VerfasserIn)
Weitere Verfasser: Zhan, Irvin Haozhe, Zeng, Long, Wang, Yu-Ping, Yi, Ran, Yu, Minjing, Lin, Matthieu Gaetan, Sheng, Jenny, Liu, Yong-Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM371196671
003 DE-627
005 20240418233616.0
007 cr uuu---uuuuu
008 240418s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3390122  |2 doi 
028 5 2 |a pubmed24n1379.xml 
035 |a (DE-627)NLM371196671 
035 |a (NLM)38630565 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Yiheng  |e verfasserin  |4 aut 
245 1 0 |a PCKRF  |b Point Cloud Completion and Keypoint Refinement With Fusion Data for 6D Pose Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Some robust point cloud registration approaches with controllable pose refinement magnitude, such as ICP and its variants, are commonly used to improve 6D pose estimation accuracy. However, the effectiveness of these methods gradually diminishes with the advancement of deep learning techniques and the enhancement of initial pose accuracy, primarily due to their lack of specific design for pose refinement. In this paper, we propose Point Cloud Completion and Keypoint Refinement with Fusion Data (PCKRF), a new pose refinement pipeline for 6D pose estimation. The pipeline consists of two steps. First, it completes the input point clouds via a novel pose-sensitive point completion network. The network uses both local and global features with pose information during point completion. Then, it registers the completed object point cloud with the corresponding target point cloud by our proposed Color supported Iterative KeyPoint (CIKP) method. The CIKP method introduces color information into registration and registers a point cloud around each keypoint to increase stability. The PCKRF pipeline can be integrated with existing popular 6D pose estimation methods, such as the full flow bidirectional fusion network, to further improve their pose estimation accuracy. Experiments demonstrate that our method exhibits superior stability compared to existing approaches when optimizing initial poses with relatively high precision. Notably, the results indicate that our method effectively complements most existing pose estimation techniques, leading to improved performance in most cases. Furthermore, our method achieves promising results even in challenging scenarios involving textureless and symmetrical objects. Our source code is available at https://github.com/zhanhz/KRF 
650 4 |a Journal Article 
700 1 |a Zhan, Irvin Haozhe  |e verfasserin  |4 aut 
700 1 |a Zeng, Long  |e verfasserin  |4 aut 
700 1 |a Wang, Yu-Ping  |e verfasserin  |4 aut 
700 1 |a Yi, Ran  |e verfasserin  |4 aut 
700 1 |a Yu, Minjing  |e verfasserin  |4 aut 
700 1 |a Lin, Matthieu Gaetan  |e verfasserin  |4 aut 
700 1 |a Sheng, Jenny  |e verfasserin  |4 aut 
700 1 |a Liu, Yong-Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 17. Apr.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:17  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3390122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 17  |c 04