Efficient and Robust Point Cloud Registration via Heuristics-Guided Parameter Search

Estimating the rigid transformation with 6 degrees of freedom based on a putative 3D correspondence set is a crucial procedure in point cloud registration. Existing correspondence identification methods usually lead to large outlier ratios (>95% is common), underscoring the significance of robust...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 10 vom: 05. Sept., Seite 6966-6984
1. Verfasser: Huang, Tianyu (VerfasserIn)
Weitere Verfasser: Li, Haoang, Peng, Liangzu, Liu, Yinlong, Liu, Yun-Hui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370921739
003 DE-627
005 20240906232650.0
007 cr uuu---uuuuu
008 240412s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3387553  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM370921739 
035 |a (NLM)38602856 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Tianyu  |e verfasserin  |4 aut 
245 1 0 |a Efficient and Robust Point Cloud Registration via Heuristics-Guided Parameter Search 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Estimating the rigid transformation with 6 degrees of freedom based on a putative 3D correspondence set is a crucial procedure in point cloud registration. Existing correspondence identification methods usually lead to large outlier ratios (>95% is common), underscoring the significance of robust registration methods. Many researchers turn to parameter search-based strategies (e.g., Branch-and-Bround) for robust registration. Although related methods show high robustness, their efficiency is limited to the high-dimensional search space. This paper proposes a heuristics-guided parameter search strategy to accelerate the search while maintaining high robustness. We first sample some correspondences (i.e., heuristics) and then just need to sequentially search the feasible regions that make each sample an inlier. Our strategy largely reduces the search space and can guarantee accuracy with only a few inlier samples, therefore enjoying an excellent trade-off between efficiency and robustness. Since directly parameterizing the 6-dimensional nonlinear feasible region for efficient search is intractable, we construct a three-stage decomposition pipeline to reparameterize the feasible region, resulting in three lower-dimensional sub-problems that are easily solvable via our strategy. Besides reducing the searching dimension, our decomposition enables the leverage of 1-dimensional interval stabbing at all three stages for searching acceleration. Moreover, we propose a valid sampling strategy to guarantee our sampling effectiveness, and a compatibility verification setup to further accelerate our search. Extensive experiments on both simulated and real-world datasets demonstrate that our approach exhibits comparable robustness with state-of-the-art methods while achieving a significant efficiency boost 
650 4 |a Journal Article 
700 1 |a Li, Haoang  |e verfasserin  |4 aut 
700 1 |a Peng, Liangzu  |e verfasserin  |4 aut 
700 1 |a Liu, Yinlong  |e verfasserin  |4 aut 
700 1 |a Liu, Yun-Hui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 10 vom: 05. Sept., Seite 6966-6984  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:10  |g day:05  |g month:09  |g pages:6966-6984 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3387553  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 10  |b 05  |c 09  |h 6966-6984