Animatable Virtual Humans : Learning Pose-Dependent Human Representations in UV Space for Interactive Performance Synthesis

We propose a novel representation of virtual humans for highly realistic real-time animation and rendering in 3D applications. We learn pose dependent appearance and geometry from highly accurate dynamic mesh sequences obtained from state-of-the-art multiview-video reconstruction. Learning pose-depe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 5 vom: 11. Apr., Seite 2644-2650
1. Verfasser: Morgenstern, Wieland (VerfasserIn)
Weitere Verfasser: Bagdasarian, Milena T, Hilsmann, Anna, Eisert, Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36956328X
003 DE-627
005 20240422232215.0
007 cr uuu---uuuuu
008 240312s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3372117  |2 doi 
028 5 2 |a pubmed24n1383.xml 
035 |a (DE-627)NLM36956328X 
035 |a (NLM)38466595 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Morgenstern, Wieland  |e verfasserin  |4 aut 
245 1 0 |a Animatable Virtual Humans  |b Learning Pose-Dependent Human Representations in UV Space for Interactive Performance Synthesis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.04.2024 
500 |a Date Revised 22.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose a novel representation of virtual humans for highly realistic real-time animation and rendering in 3D applications. We learn pose dependent appearance and geometry from highly accurate dynamic mesh sequences obtained from state-of-the-art multiview-video reconstruction. Learning pose-dependent appearance and geometry from mesh sequences poses significant challenges, as it requires the network to learn the intricate shape and articulated motion of a human body. However, statistical body models like SMPL provide valuable a-priori knowledge which we leverage in order to constrain the dimension of the search space, enabling more efficient and targeted learning and to define pose-dependency. Instead of directly learning absolute pose-dependent geometry, we learn the difference between the observed geometry and the fitted SMPL model. This allows us to encode both pose-dependent appearance and geometry in the consistent UV space of the SMPL model. This approach not only ensures a high level of realism but also facilitates streamlined processing and rendering of virtual humans in real-time scenarios 
650 4 |a Journal Article 
700 1 |a Bagdasarian, Milena T  |e verfasserin  |4 aut 
700 1 |a Hilsmann, Anna  |e verfasserin  |4 aut 
700 1 |a Eisert, Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 5 vom: 11. Apr., Seite 2644-2650  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:5  |g day:11  |g month:04  |g pages:2644-2650 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3372117  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 5  |b 11  |c 04  |h 2644-2650