Quantifying Dielectric Material Charge Trapping and De-Trapping Ability Via Ultra-Fast Charge Self-Injection Technique

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 19 vom: 09. Mai, Seite e2312148
1. Verfasser: Xu, Shuyan (VerfasserIn)
Weitere Verfasser: Wang, Jian, Wu, Huiyuan, Zhao, Qionghua, Li, Gui, Fu, Shaoke, Shan, Chuncai, Li, Kaixian, Zhang, Zhiyi, Hu, Chenguo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article air breakdown charge self‐injection secondary self‐charge excitation triboelectric nanogenerator triboelectric series
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Recently, utilizing the air breakdown effect in the charge excitation strategy proves as an efficient charge injection technique to increase the surface charge density of dielectric polymers for triboelectric nanogenerators (TENGs). However, quantitative characterization of the ability of dielectric polymers to trap reverse charges and the effect on the startup time of secondary self-charge excitation (SSCE) are essential for extensive applications. Here, an ultra-fast charge self-injection technique based on a self-charge excitation strategy is proposed, and a standard method to quantify the charge trapping and de-trapping abilities of 23 traditional tribo-materials is introduced. Further, the relationship among the distribution of dielectric intrinsic deep, shallow trap states, and transportation of trapped charges is systematically analyzed in this article. It shows that the de-trapping rate of charges directly determines the reactivation and failure of SSCE. Last, independent of TENG contact efficiency, an ultra-high charge density of 2.67 mC m-2 and an ultra-fast startup time of SSCE are obtained using a 15 µm poly(vinylidene fluoride-trifluoroethylene) film, breaking the historical record for material modification. As a standard for material selection, this work quantifies the charge trapping and de-trapping ability of the triboelectric dielectric series and provides insights for understanding the charge transport in dielectrics
Beschreibung:Date Revised 09.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202312148