Resistive Memory Devices at the Thinnest Limit : Progress and Challenges

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 10. Apr., Seite e2307951
1. Verfasser: Li, Xiao-Dong (VerfasserIn)
Weitere Verfasser: Chen, Nian-Ke, Wang, Bai-Qian, Niu, Meng, Xu, Ming, Miao, Xiangshui, Li, Xian-Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review 2D monolayer materials atomristor, memristor memtransistor nonvolatile memory
LEADER 01000caa a22002652 4500
001 NLM366881809
003 DE-627
005 20240412232710.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202307951  |2 doi 
028 5 2 |a pubmed24n1373.xml 
035 |a (DE-627)NLM366881809 
035 |a (NLM)38197585 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xiao-Dong  |e verfasserin  |4 aut 
245 1 0 |a Resistive Memory Devices at the Thinnest Limit  |b Progress and Challenges 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a The Si-based integrated circuits industry has been developing for more than half a century, by focusing on the scaling-down of transistor. However, the miniaturization of transistors will soon reach its physical limits, thereby requiring novel material and device technologies. Resistive memory is a promising candidate for in-memory computing and energy-efficient synaptic devices that can satisfy the computational demands of the future applications. However, poor cycle-to-cycle and device-to-device uniformities hinder its mass production. 2D materials, as a new type of semiconductor, is successfully employed in various micro/nanoelectronic devices and have the potential to drive future innovation in resistive memory technology. This review evaluates the potential of using the thinnest advanced materials, that is, monolayer 2D materials, for memristor or memtransistor applications, including resistive switching behavior and atomic mechanism, high-frequency device performances, and in-memory computing/neuromorphic computing applications. The scaling-down advantages of promising monolayer 2D materials including graphene, transition metal dichalcogenides, and hexagonal boron nitride are presented. Finally, the technical challenges of these atomic devices for practical applications are elaborately discussed. The study of monolayer-2D-material-based resistive memory is expected to play a positive role in the exploration of beyond-Si electronic technologies 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a 2D monolayer materials 
650 4 |a atomristor, memristor 
650 4 |a memtransistor 
650 4 |a nonvolatile memory 
700 1 |a Chen, Nian-Ke  |e verfasserin  |4 aut 
700 1 |a Wang, Bai-Qian  |e verfasserin  |4 aut 
700 1 |a Niu, Meng  |e verfasserin  |4 aut 
700 1 |a Xu, Ming  |e verfasserin  |4 aut 
700 1 |a Miao, Xiangshui  |e verfasserin  |4 aut 
700 1 |a Li, Xian-Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 15 vom: 10. Apr., Seite e2307951  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:15  |g day:10  |g month:04  |g pages:e2307951 
856 4 0 |u http://dx.doi.org/10.1002/adma.202307951  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 15  |b 10  |c 04  |h e2307951