Limits to Hole Mobility and Doping in Copper Iodide

© 2023 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 35(2023), 21 vom: 14. Nov., Seite 8995-9006
1. Verfasser: Willis, Joe (VerfasserIn)
Weitere Verfasser: Claes, Romain, Zhou, Qi, Giantomassi, Matteo, Rignanese, Gian-Marco, Hautier, Geoffroy, Scanlon, David O
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM365186856
003 DE-627
005 20231226101133.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.3c01628  |2 doi 
028 5 2 |a pubmed24n1217.xml 
035 |a (DE-627)NLM365186856 
035 |a (NLM)38027540 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Willis, Joe  |e verfasserin  |4 aut 
245 1 0 |a Limits to Hole Mobility and Doping in Copper Iodide 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.12.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. Published by American Chemical Society. 
520 |a Over one hundred years have passed since the discovery of the p-type transparent conducting material copper iodide, predating the concept of the "electron-hole" itself. Supercentenarian status notwithstanding, little is understood about the charge transport mechanisms in CuI. Herein, a variety of modeling techniques are used to investigate the charge transport properties of CuI, and limitations to the hole mobility over experimentally achievable carrier concentrations are discussed. Poor dielectric response is responsible for extensive scattering from ionized impurities at degenerately doped carrier concentrations, while phonon scattering is found to dominate at lower carrier concentrations. A phonon-limited hole mobility of 162 cm2 V-1 s-1 is predicted at room temperature. The simulated charge transport properties for CuI are compared to existing experimental data, and the implications for future device performance are discussed. In addition to charge transport calculations, the defect chemistry of CuI is investigated with hybrid functionals, revealing that reasonably localized holes from the copper vacancy are the predominant source of charge carriers. The chalcogens S and Se are investigated as extrinsic dopants, where it is found that despite relatively low defect formation energies, they are unlikely to act as efficient electron acceptors due to the strong localization of holes and subsequent deep transition levels 
650 4 |a Journal Article 
700 1 |a Claes, Romain  |e verfasserin  |4 aut 
700 1 |a Zhou, Qi  |e verfasserin  |4 aut 
700 1 |a Giantomassi, Matteo  |e verfasserin  |4 aut 
700 1 |a Rignanese, Gian-Marco  |e verfasserin  |4 aut 
700 1 |a Hautier, Geoffroy  |e verfasserin  |4 aut 
700 1 |a Scanlon, David O  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 35(2023), 21 vom: 14. Nov., Seite 8995-9006  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:21  |g day:14  |g month:11  |g pages:8995-9006 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.3c01628  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 21  |b 14  |c 11  |h 8995-9006