AdaPoinTr : Diverse Point Cloud Completion With Adaptive Geometry-Aware Transformers

In this paper, we propose a Transformer encoder-decoder architecture, called PoinTr, which reformulates point cloud completion as a set-to-set translation problem and employs a geometry-aware block to model local geometric relationships explicitly. The migration of Transformers enables our model to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 14114-14130
1. Verfasser: Yu, Xumin (VerfasserIn)
Weitere Verfasser: Rao, Yongming, Wang, Ziyi, Lu, Jiwen, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM364160519
003 DE-627
005 20231226094844.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3309253  |2 doi 
028 5 2 |a pubmed24n1213.xml 
035 |a (DE-627)NLM364160519 
035 |a (NLM)37924200 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Xumin  |e verfasserin  |4 aut 
245 1 0 |a AdaPoinTr  |b Diverse Point Cloud Completion With Adaptive Geometry-Aware Transformers 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a Transformer encoder-decoder architecture, called PoinTr, which reformulates point cloud completion as a set-to-set translation problem and employs a geometry-aware block to model local geometric relationships explicitly. The migration of Transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Taking a step towards more complicated and diverse situations, we further propose AdaPoinTr by developing an adaptive query generation mechanism and designing a novel denoising task during completing a point cloud. Coupling these two techniques enables us to train the model efficiently and effectively: we reduce training time (by 15x or more) and improve completion performance (over 20%). Additionally, we propose two more challenging benchmarks with more diverse incomplete point clouds that can better reflect real-world scenarios to promote future research. We also show our method can be extended to the scene-level point cloud completion scenario by designing a new geometry-enhanced semantic scene completion framework. Extensive experiments on the existing and newly-proposed datasets demonstrate the effectiveness of our method, which attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI, surpassing other work by a large margin and establishing new state-of-the-arts on various benchmarks. Most notably, AdaPoinTr can achieve such promising performance with higher throughputs and fewer FLOPs compared with the previous best methods in practice 
650 4 |a Journal Article 
700 1 |a Rao, Yongming  |e verfasserin  |4 aut 
700 1 |a Wang, Ziyi  |e verfasserin  |4 aut 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 01. Dez., Seite 14114-14130  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:01  |g month:12  |g pages:14114-14130 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3309253  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 01  |c 12  |h 14114-14130