AdaPoinTr : Diverse Point Cloud Completion With Adaptive Geometry-Aware Transformers

In this paper, we propose a Transformer encoder-decoder architecture, called PoinTr, which reformulates point cloud completion as a set-to-set translation problem and employs a geometry-aware block to model local geometric relationships explicitly. The migration of Transformers enables our model to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 01. Dez., Seite 14114-14130
1. Verfasser: Yu, Xumin (VerfasserIn)
Weitere Verfasser: Rao, Yongming, Wang, Ziyi, Lu, Jiwen, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we propose a Transformer encoder-decoder architecture, called PoinTr, which reformulates point cloud completion as a set-to-set translation problem and employs a geometry-aware block to model local geometric relationships explicitly. The migration of Transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Taking a step towards more complicated and diverse situations, we further propose AdaPoinTr by developing an adaptive query generation mechanism and designing a novel denoising task during completing a point cloud. Coupling these two techniques enables us to train the model efficiently and effectively: we reduce training time (by 15x or more) and improve completion performance (over 20%). Additionally, we propose two more challenging benchmarks with more diverse incomplete point clouds that can better reflect real-world scenarios to promote future research. We also show our method can be extended to the scene-level point cloud completion scenario by designing a new geometry-enhanced semantic scene completion framework. Extensive experiments on the existing and newly-proposed datasets demonstrate the effectiveness of our method, which attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI, surpassing other work by a large margin and establishing new state-of-the-arts on various benchmarks. Most notably, AdaPoinTr can achieve such promising performance with higher throughputs and fewer FLOPs compared with the previous best methods in practice
Beschreibung:Date Revised 07.11.2023
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2023.3309253