Modeling the combined resistance to microwave treatments and salt conditions of Escherichia coli and Staphylococcus aureus
In the present study, the efficiency of the combined effect of microwave irradiation treatments together with salt concentration was assessed against Escherichia coli and Staphylococcus aureus. Microbial survival has been modeled through a one-step Weibull equation considering the non-isothermal pro...
Veröffentlicht in: | Food science and technology international = Ciencia y tecnologia de los alimentos internacional. - 1998. - (2023) vom: 10. Okt., Seite 10820132231205622 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Food science and technology international = Ciencia y tecnologia de los alimentos internacional |
Schlagworte: | Journal Article Dynamic inactivation Escherichia coli Staphylococcus aureus Weibull models hurdle technology |
Zusammenfassung: | In the present study, the efficiency of the combined effect of microwave irradiation treatments together with salt concentration was assessed against Escherichia coli and Staphylococcus aureus. Microbial survival has been modeled through a one-step Weibull equation considering the non-isothermal profiles during the heating treatments. Three sodium chloride concentrations 0.5%, 3.5%, and 8.5% (w/v) treated under three microwave power levels (450, 600, and 800 W) were studied. Predictive models were validated using the determination coefficient (R2), root mean squared error and the acceptable prediction zone with external data obtained from ultra high temperature milk. The results obtained suggested that increasing microwave power levels and decreasing salt concentrations led to a higher microbial inactivation, being the δ values (time for achieving a first decimal reduction) for E coli of 19.57 s at 800 W and 0.5% NaCl. In contrast, experimental data of S aureus showed a higher variability since it presented more resistance to the microwave treatments. The results obtained and generated models can be used as decision-making tools to set specific guidelines on microwave treatments for assuring food safety |
---|---|
Beschreibung: | Date Revised 21.12.2023 published: Print-Electronic Citation Status Publisher |
ISSN: | 1532-1738 |
DOI: | 10.1177/10820132231205622 |