Positive-Unlabeled Learning With Label Distribution Alignment

Positive-Unlabeled (PU) data arise frequently in a wide range of fields such as medical diagnosis, anomaly analysis and personalized advertising. The absence of any known negative labels makes it very challenging to learn binary classifiers from such data. Many state-of-the-art methods reformulate t...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 05. Dez., Seite 15345-15363
Auteur principal: Jiang, Yangbangyan (Auteur)
Autres auteurs: Xu, Qianqian, Zhao, Yunrui, Yang, Zhiyong, Wen, Peisong, Cao, Xiaochun, Huang, Qingming
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article