Positive-Unlabeled Learning With Label Distribution Alignment

Positive-Unlabeled (PU) data arise frequently in a wide range of fields such as medical diagnosis, anomaly analysis and personalized advertising. The absence of any known negative labels makes it very challenging to learn binary classifiers from such data. Many state-of-the-art methods reformulate t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 12 vom: 05. Dez., Seite 15345-15363
1. Verfasser: Jiang, Yangbangyan (VerfasserIn)
Weitere Verfasser: Xu, Qianqian, Zhao, Yunrui, Yang, Zhiyong, Wen, Peisong, Cao, Xiaochun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM362476926
003 DE-627
005 20250305070311.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3319431  |2 doi 
028 5 2 |a pubmed25n1207.xml 
035 |a (DE-627)NLM362476926 
035 |a (NLM)37751347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Yangbangyan  |e verfasserin  |4 aut 
245 1 0 |a Positive-Unlabeled Learning With Label Distribution Alignment 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Positive-Unlabeled (PU) data arise frequently in a wide range of fields such as medical diagnosis, anomaly analysis and personalized advertising. The absence of any known negative labels makes it very challenging to learn binary classifiers from such data. Many state-of-the-art methods reformulate the original classification risk with individual risks over positive and unlabeled data, and explicitly minimize the risk of classifying unlabeled data as negative. This, however, usually leads to classifiers with a bias toward negative predictions, i.e., they tend to recognize most unlabeled data as negative. In this paper, we propose a label distribution alignment formulation for PU learning to alleviate this issue. Specifically, we align the distribution of predicted labels with the ground-truth, which is constant for a given class prior. In this way, the proportion of samples predicted as negative is explicitly controlled from a global perspective, and thus the bias toward negative predictions could be intrinsically eliminated. On top of this, we further introduce the idea of functional margins to enhance the model's discriminability, and derive a margin-based learning framework named Positive-Unlabeled learning with Label Distribution Alignment (PULDA). This framework is also combined with the class prior estimation process for practical scenarios, and theoretically supported by a generalization analysis. Moreover, a stochastic mini-batch optimization algorithm based on the exponential moving average strategy is tailored for this problem with a convergence guarantee. Finally, comprehensive empirical results demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Xu, Qianqian  |e verfasserin  |4 aut 
700 1 |a Zhao, Yunrui  |e verfasserin  |4 aut 
700 1 |a Yang, Zhiyong  |e verfasserin  |4 aut 
700 1 |a Wen, Peisong  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 12 vom: 05. Dez., Seite 15345-15363  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:12  |g day:05  |g month:12  |g pages:15345-15363 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3319431  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 12  |b 05  |c 12  |h 15345-15363