HDGT : Heterogeneous Driving Graph Transformer for Multi-Agent Trajectory Prediction via Scene Encoding

Encoding a driving scene into vector representations has been an essential task for autonomous driving that can benefit downstream tasks e.g., trajectory prediction. The driving scene often involves heterogeneous elements such as the different types of objects (agents, lanes, traffic signs) and the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 24. Nov., Seite 13860-13875
1. Verfasser: Jia, Xiaosong (VerfasserIn)
Weitere Verfasser: Wu, Penghao, Chen, Li, Liu, Yu, Li, Hongyang, Yan, Junchi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM359870686
003 DE-627
005 20231226081810.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3298301  |2 doi 
028 5 2 |a pubmed24n1199.xml 
035 |a (DE-627)NLM359870686 
035 |a (NLM)37486847 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Xiaosong  |e verfasserin  |4 aut 
245 1 0 |a HDGT  |b Heterogeneous Driving Graph Transformer for Multi-Agent Trajectory Prediction via Scene Encoding 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Encoding a driving scene into vector representations has been an essential task for autonomous driving that can benefit downstream tasks e.g., trajectory prediction. The driving scene often involves heterogeneous elements such as the different types of objects (agents, lanes, traffic signs) and the semantic relations between objects are rich and diverse. Meanwhile, there also exist relativity across elements, which means that the spatial relation is a relative concept and need be encoded in a ego-centric manner instead of in a global coordinate system. Based on these observations, we propose Heterogeneous Driving Graph Transformer (HDGT), a backbone modelling the driving scene as a heterogeneous graph with different types of nodes and edges. For heterogeneous graph construction, we connect different types of nodes according to diverse semantic relations. For spatial relation encoding, the coordinates of the node as well as its in-edges are in the local node-centric coordinate system. For the aggregation module in the graph neural network (GNN), we adopt the transformer structure in a hierarchical way to fit the heterogeneous nature of inputs. Experimental results show that HDGT achieves state-of-the-art performance for the task of trajectory prediction, on INTERACTION Prediction Challenge and Waymo Open Motion Challenge 
650 4 |a Journal Article 
700 1 |a Wu, Penghao  |e verfasserin  |4 aut 
700 1 |a Chen, Li  |e verfasserin  |4 aut 
700 1 |a Liu, Yu  |e verfasserin  |4 aut 
700 1 |a Li, Hongyang  |e verfasserin  |4 aut 
700 1 |a Yan, Junchi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 24. Nov., Seite 13860-13875  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:24  |g month:11  |g pages:13860-13875 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3298301  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 24  |c 11  |h 13860-13875