Anti-adsorption Mechanism of Photoresist by Pluronic Surfactants : An Insight into Their Adsorbed Structure

Photoresist stripping is the final step in the photolithography process that forms fine patterns for electronic devices. Recently, a mixture of ethylene carbonate (EC) and propylene carbonate (PC) has attracted attention as a new stripper based on its eco-friendliness and anti-corrosiveness. However...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 39(2023), 22 vom: 06. Juni, Seite 7876-7883
1. Verfasser: Hanzawa, Masaki (VerfasserIn)
Weitere Verfasser: Ogura, Taku, Tsuchiya, Koji, Akamatsu, Masaaki, Sakai, Kenichi, Sakai, Hideki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Photoresist stripping is the final step in the photolithography process that forms fine patterns for electronic devices. Recently, a mixture of ethylene carbonate (EC) and propylene carbonate (PC) has attracted attention as a new stripper based on its eco-friendliness and anti-corrosiveness. However, the EC/PC mixture causes re-adsorption of the photoresist during a process of subsequent water rinsing. In this study, we characterized the adsorption/desorption of the photoresist and a triblock Pluronic surfactant [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] as a blocking agent on an indium tin oxide (ITO) substrate. In addition, we evaluated the dispersion of photoresist particles. The photoresist polymer formed a thin and rigid adsorption layer on an ITO substrate in the EC/PC mixture. When water was injected into the EC/PC mixture and the photoresist solutions, the photoresist polymer aggregated and was then deposited on the substrate. In contrast, the addition of Pluronic surfactant F-68 (PEO79PPO30PEO79) into the EC/PC mixture remarkably decreased the residual amount of the photoresist on the ITO after water injection. This variation was attributed to the PEO blocks of F-68 extended to the solution phase, whereas the PPO blocks of F-68 functioned as anchors for adsorption onto the photoresist. Therefore, the F-68-adsorbed layer prevented interaction between the photoresist particles or the photoresist and the ITO surface, which provides potential for future applications as new stripping agents with high removal performance
Beschreibung:Date Completed 06.06.2023
Date Revised 10.06.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c00714