All-Transfer Electrode Interface Engineering Toward Harsh-Environment-Resistant MoS2 Field-Effect Transistors

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 18 vom: 31. Mai, Seite e2210735
1. Verfasser: Wu, Yonghuang (VerfasserIn)
Weitere Verfasser: Xin, Zeqin, Zhang, Zhibin, Wang, Bolun, Peng, Ruixuan, Wang, Enze, Shi, Run, Liu, Yiqun, Guo, Jing, Liu, Kaihui, Liu, Kai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article field-effect transistors harsh-environment resistance interface engineering molybdenum disulfide van der Waals electrodes
Beschreibung
Zusammenfassung:© 2023 Wiley-VCH GmbH.
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices
Beschreibung:Date Completed 07.05.2023
Date Revised 07.05.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202210735