Substitutional p-Type Doping in NbS2 -MoS2 Lateral Heterostructures Grown by MOCVD

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 14 vom: 15. Apr., Seite e2209371
1. Verfasser: Wang, Zhenyu (VerfasserIn)
Weitere Verfasser: Tripathi, Mukesh, Golsanamlou, Zahra, Kumari, Poonam, Lovarelli, Giuseppe, Mazziotti, Fabrizio, Logoteta, Demetrio, Fiori, Gianluca, Sementa, Luca, Marega, Guilherme Migliato, Ji, Hyun Goo, Zhao, Yanfei, Radenovic, Aleksandra, Iannaccone, Giuseppe, Fortunelli, Alessandro, Kis, Andras
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article TMDC heterostructures metal-organic chemical vapor deposition (MOCVD) p-type MoS2 substitutional doping
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Monolayer MoS2 has attracted significant attention owing to its excellent performance as an n-type semiconductor from the transition metal dichalcogenide (TMDC) family. It is however strongly desired to develop controllable synthesis methods for 2D p-type MoS2 , which is crucial for complementary logic applications but remains difficult. In this work, high-quality NbS2 -MoS2 lateral heterostructures are synthesized by one-step metal-organic chemical vapor deposition (MOCVD) together with monolayer MoS2 substitutionally doped by Nb, resulting in a p-type doped behavior. The heterojunction shows a p-type transfer characteristic with a high on/off current ratio of ≈104 , exceeding previously reported values. The band structure through the NbS2 -MoS2 heterojunction is investigated by density functional theory (DFT) and quantum transport simulations. This work provides a scalable approach to synthesize substitutionally doped TMDC materials and provides an insight into the interface between 2D metals and semiconductors in lateral heterostructures, which is imperative for the development of next-generation nanoelectronics and highly integrated devices
Beschreibung:Date Completed 06.04.2023
Date Revised 16.08.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202209371