Fast, Multi-Bit, and Vis-Infrared Broadband Nonvolatile Optoelectronic Memory with MoS2 /2D-Perovskite Van der Waals Heterojunction

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 6 vom: 01. Feb., Seite e2208664
1. Verfasser: Lai, Haojie (VerfasserIn)
Weitere Verfasser: Lu, Zhengli, Lu, Yueheng, Yao, Xuanchun, Xu, Xin, Chen, Jian, Zhou, Yang, Liu, Pengyi, Shi, Tingting, Wang, Xiaomu, Xie, Weiguang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D perovskite broadband optoelectronic memory charge-trapping memory van der Waals heterostructure
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS2 /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS2 into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS2 /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength
Beschreibung:Date Completed 10.02.2023
Date Revised 10.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202208664