Faster and lower-dose X-ray reflectivity measurements enabled by physics-informed modeling and artificial intelligence co-refinement

© David Mareček et al. 2022.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 55(2022), Pt 5 vom: 01. Okt., Seite 1305-1313
1. Verfasser: Mareček, David (VerfasserIn)
Weitere Verfasser: Oberreiter, Julian, Nelson, Andrew, Kowarik, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray reflectivity co-refinement in situ measurement neural networks neutron reflectivity
LEADER 01000naa a22002652 4500
001 NLM347644635
003 DE-627
005 20231226034323.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1107/S2053273322008051  |2 doi 
028 5 2 |a pubmed24n1158.xml 
035 |a (DE-627)NLM347644635 
035 |a (NLM)36249496 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mareček, David  |e verfasserin  |4 aut 
245 1 0 |a Faster and lower-dose X-ray reflectivity measurements enabled by physics-informed modeling and artificial intelligence co-refinement 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.10.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © David Mareček et al. 2022. 
520 |a An approach is presented for analysis of real-time X-ray reflectivity (XRR) process data not just as a function of the magnitude of the reciprocal-space vector q, as is commonly done, but as a function of both q and time. The real-space structures extracted from the XRR curves are restricted to be solutions of a physics-informed growth model and use state-of-the-art convolutional neural networks (CNNs) and differential evolution fitting to co-refine multiple time-dependent XRR curves R(q, t) of a thin film growth experiment. Thereby it becomes possible to correctly analyze XRR data with a fidelity corresponding to standard fits of individual XRR curves, even if they are sparsely sampled, with a sevenfold reduction of XRR data points, or if the data are noisy due to a 200-fold reduction in counting times. The approach of using a CNN analysis and of including prior information through a kinetic model is not limited to growth studies but can be easily extended to other kinetic X-ray or neutron reflectivity data to enable faster measurements with less beam damage 
650 4 |a Journal Article 
650 4 |a X-ray reflectivity 
650 4 |a co-refinement 
650 4 |a in situ measurement 
650 4 |a neural networks 
650 4 |a neutron reflectivity 
700 1 |a Oberreiter, Julian  |e verfasserin  |4 aut 
700 1 |a Nelson, Andrew  |e verfasserin  |4 aut 
700 1 |a Kowarik, Stefan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 55(2022), Pt 5 vom: 01. Okt., Seite 1305-1313  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:55  |g year:2022  |g number:Pt 5  |g day:01  |g month:10  |g pages:1305-1313 
856 4 0 |u http://dx.doi.org/10.1107/S2053273322008051  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2022  |e Pt 5  |b 01  |c 10  |h 1305-1313