A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization

In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a new descent direction for the rank-one SNMF is derived and a strategy for choosing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 14. Mai, Seite 5355-5369
1. Verfasser: Hou, Liangshao (VerfasserIn)
Weitere Verfasser: Chu, Delin, Liao, Li-Zhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article