A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization

In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a new descent direction for the rank-one SNMF is derived and a strategy for choosing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 14. Mai, Seite 5355-5369
1. Verfasser: Hou, Liangshao (VerfasserIn)
Weitere Verfasser: Chu, Delin, Liao, Li-Zhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a new descent direction for the rank-one SNMF is derived and a strategy for choosing the step size along this descent direction is established; (ii) a progressive hierarchical alternating least squares (PHALS) method for SNMF is developed, which is parameter-free and updates the variables column by column. Moreover, every column is updated by solving a rank-one SNMF subproblem; and (iii) the convergence to the Karush-Kuhn-Tucker (KKT) point set (or the stationary point set) is proved for PHALS. Several synthetical and real data sets are tested to demonstrate the effectiveness and efficiency of the proposed method. Our PHALS provides better performance in terms of the computational accuracy, the optimality gap, and the CPU time, compared with a number of state-of-the-art SNMF methods
Beschreibung:Date Completed 10.04.2023
Date Revised 11.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3206465