A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization

In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a new descent direction for the rank-one SNMF is derived and a strategy for choosing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 14. Mai, Seite 5355-5369
1. Verfasser: Hou, Liangshao (VerfasserIn)
Weitere Verfasser: Chu, Delin, Liao, Li-Zhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM346202647
003 DE-627
005 20231226030844.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3206465  |2 doi 
028 5 2 |a pubmed24n1153.xml 
035 |a (DE-627)NLM346202647 
035 |a (NLM)36103449 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hou, Liangshao  |e verfasserin  |4 aut 
245 1 2 |a A Progressive Hierarchical Alternating Least Squares Method for Symmetric Nonnegative Matrix Factorization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a new descent direction for the rank-one SNMF is derived and a strategy for choosing the step size along this descent direction is established; (ii) a progressive hierarchical alternating least squares (PHALS) method for SNMF is developed, which is parameter-free and updates the variables column by column. Moreover, every column is updated by solving a rank-one SNMF subproblem; and (iii) the convergence to the Karush-Kuhn-Tucker (KKT) point set (or the stationary point set) is proved for PHALS. Several synthetical and real data sets are tested to demonstrate the effectiveness and efficiency of the proposed method. Our PHALS provides better performance in terms of the computational accuracy, the optimality gap, and the CPU time, compared with a number of state-of-the-art SNMF methods 
650 4 |a Journal Article 
700 1 |a Chu, Delin  |e verfasserin  |4 aut 
700 1 |a Liao, Li-Zhi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 14. Mai, Seite 5355-5369  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:14  |g month:05  |g pages:5355-5369 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3206465  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 14  |c 05  |h 5355-5369