Large Memory Window of van der Waals Heterostructure Devices Based on MOCVD-Grown 2D Layered Ge4 Se9

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 41 vom: 31. Okt., Seite e2204982
1. Verfasser: Noh, Gichang (VerfasserIn)
Weitere Verfasser: Song, Hwayoung, Choi, Heenang, Kim, Mingyu, Jeong, Jae Hwan, Lee, Yongjoon, Choi, Min-Yeong, Oh, Saeyoung, Jo, Min-Kyung, Woo, Dong Yeon, Jo, Yooyeon, Park, Eunpyo, Moon, Eoram, Kim, Tae Soo, Chai, Hyun-Jun, Huh, Woong, Lee, Chul-Ho, Kim, Cheol-Joo, Yang, Heejun, Song, Senugwoo, Jeong, Hu Young, Kim, Yong-Sung, Lee, Gwan-Hyoung, Lim, Jongsun, Kim, Chang Gyoun, Chung, Taek-Mo, Kwak, Joon Young, Kang, Kibum
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article charge transfer germanium selenide metal-organic chemical vapor deposition synaptic devices van der Waals heterostructures
LEADER 01000naa a22002652 4500
001 NLM345187067
003 DE-627
005 20231226024508.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202204982  |2 doi 
028 5 2 |a pubmed24n1150.xml 
035 |a (DE-627)NLM345187067 
035 |a (NLM)36000232 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Noh, Gichang  |e verfasserin  |4 aut 
245 1 0 |a Large Memory Window of van der Waals Heterostructure Devices Based on MOCVD-Grown 2D Layered Ge4 Se9 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Van der Waals (vdW) heterostructures have drawn much interest over the last decade owing to their absence of dangling bonds and their intriguing low-dimensional properties. The emergence of 2D materials has enabled the achievement of significant progress in both the discovery of physical phenomena and the realization of superior devices. In this work, the group IV metal chalcogenide 2D-layered Ge4 Se9 is introduced as a new selection of insulating vdW material. 2D-layered Ge4 Se9 is synthesized with a rectangular shape using the metalcorganic chemical vapor deposition system using a liquid germanium precursor at 240 °C. By stacking the Ge4 Se9 and MoS2 , vdW heterostructure devices are fabricated with a giant memory window of 129 V by sweeping back gate range of ±80 V. The gate-independent decay time reveals that the large hysteresis is induced by the interfacial charge transfer, which originates from the low band offset. Moreover, repeatable conductance changes are observed over the 2250 pulses with low non-linearity values of 0.26 and 0.95 for potentiation and depression curves, respectively. The energy consumption of the MoS2 /Ge4 Se9 device is about 15 fJ for operating energy and the learning accuracy of image classification reaches 88.3%, which further proves the great potential of artificial synapses 
650 4 |a Journal Article 
650 4 |a charge transfer 
650 4 |a germanium selenide 
650 4 |a metal-organic chemical vapor deposition 
650 4 |a synaptic devices 
650 4 |a van der Waals heterostructures 
700 1 |a Song, Hwayoung  |e verfasserin  |4 aut 
700 1 |a Choi, Heenang  |e verfasserin  |4 aut 
700 1 |a Kim, Mingyu  |e verfasserin  |4 aut 
700 1 |a Jeong, Jae Hwan  |e verfasserin  |4 aut 
700 1 |a Lee, Yongjoon  |e verfasserin  |4 aut 
700 1 |a Choi, Min-Yeong  |e verfasserin  |4 aut 
700 1 |a Oh, Saeyoung  |e verfasserin  |4 aut 
700 1 |a Jo, Min-Kyung  |e verfasserin  |4 aut 
700 1 |a Woo, Dong Yeon  |e verfasserin  |4 aut 
700 1 |a Jo, Yooyeon  |e verfasserin  |4 aut 
700 1 |a Park, Eunpyo  |e verfasserin  |4 aut 
700 1 |a Moon, Eoram  |e verfasserin  |4 aut 
700 1 |a Kim, Tae Soo  |e verfasserin  |4 aut 
700 1 |a Chai, Hyun-Jun  |e verfasserin  |4 aut 
700 1 |a Huh, Woong  |e verfasserin  |4 aut 
700 1 |a Lee, Chul-Ho  |e verfasserin  |4 aut 
700 1 |a Kim, Cheol-Joo  |e verfasserin  |4 aut 
700 1 |a Yang, Heejun  |e verfasserin  |4 aut 
700 1 |a Song, Senugwoo  |e verfasserin  |4 aut 
700 1 |a Jeong, Hu Young  |e verfasserin  |4 aut 
700 1 |a Kim, Yong-Sung  |e verfasserin  |4 aut 
700 1 |a Lee, Gwan-Hyoung  |e verfasserin  |4 aut 
700 1 |a Lim, Jongsun  |e verfasserin  |4 aut 
700 1 |a Kim, Chang Gyoun  |e verfasserin  |4 aut 
700 1 |a Chung, Taek-Mo  |e verfasserin  |4 aut 
700 1 |a Kwak, Joon Young  |e verfasserin  |4 aut 
700 1 |a Kang, Kibum  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 41 vom: 31. Okt., Seite e2204982  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:41  |g day:31  |g month:10  |g pages:e2204982 
856 4 0 |u http://dx.doi.org/10.1002/adma.202204982  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 41  |b 31  |c 10  |h e2204982