Panicle Ratio Network : streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 73(2022), 19 vom: 02. Nov., Seite 6575-6588
Auteur principal: Guo, Ziyue (Auteur)
Autres auteurs: Yang, Chenghai, Yang, Wangnen, Chen, Guoxing, Jiang, Zhao, Wang, Botao, Zhang, Jian
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Deep convolutional neural network effective tiller percentage heading date rice panicle ratio network ultra-high-definition image unmanned aerial vehicle