Panicle Ratio Network : streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Bibliographische Detailangaben
Veröffentlicht in: | Journal of experimental botany. - 1985. - 73(2022), 19 vom: 02. Nov., Seite 6575-6588
|
1. Verfasser: |
Guo, Ziyue
(VerfasserIn) |
Weitere Verfasser: |
Yang, Chenghai,
Yang, Wangnen,
Chen, Guoxing,
Jiang, Zhao,
Wang, Botao,
Zhang, Jian |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany
|
Schlagworte: | Journal Article
Research Support, Non-U.S. Gov't
Deep convolutional neural network
effective tiller percentage
heading date
rice panicle ratio network
ultra-high-definition image
unmanned aerial vehicle |