Panicle Ratio Network : streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 73(2022), 19 vom: 02. Nov., Seite 6575-6588
1. Verfasser: Guo, Ziyue (VerfasserIn)
Weitere Verfasser: Yang, Chenghai, Yang, Wangnen, Chen, Guoxing, Jiang, Zhao, Wang, Botao, Zhang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Deep convolutional neural network effective tiller percentage heading date rice panicle ratio network ultra-high-definition image unmanned aerial vehicle