Panicle Ratio Network : streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Détails bibliographiques
| Publié dans: | Journal of experimental botany. - 1985. - 73(2022), 19 vom: 02. Nov., Seite 6575-6588
|
| Auteur principal: |
Guo, Ziyue
(Auteur) |
| Autres auteurs: |
Yang, Chenghai,
Yang, Wangnen,
Chen, Guoxing,
Jiang, Zhao,
Wang, Botao,
Zhang, Jian |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2022
|
| Accès à la collection: | Journal of experimental botany
|
| Sujets: | Journal Article
Research Support, Non-U.S. Gov't
Deep convolutional neural network
effective tiller percentage
heading date
rice panicle ratio network
ultra-high-definition image
unmanned aerial vehicle |