Panicle Ratio Network : streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 73(2022), 19 vom: 02. Nov., Seite 6575-6588
1. Verfasser: Guo, Ziyue (VerfasserIn)
Weitere Verfasser: Yang, Chenghai, Yang, Wangnen, Chen, Guoxing, Jiang, Zhao, Wang, Botao, Zhang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Deep convolutional neural network effective tiller percentage heading date rice panicle ratio network ultra-high-definition image unmanned aerial vehicle
LEADER 01000naa a22002652 4500
001 NLM342968785
003 DE-627
005 20231226015329.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erac294  |2 doi 
028 5 2 |a pubmed24n1143.xml 
035 |a (DE-627)NLM342968785 
035 |a (NLM)35776094 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Ziyue  |e verfasserin  |4 aut 
245 1 0 |a Panicle Ratio Network  |b streamlining rice panicle measurement by deep learning with ultra-high-definition aerial images in the field 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.11.2022 
500 |a Date Revised 22.11.2022 
500 |a published: Print 
500 |a figshare: 10.6084/m9.figshare.17169266.v1 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a The heading date and effective tiller percentage are important traits in rice, and they directly affect plant architecture and yield. Both traits are related to the ratio of the panicle number to the maximum tiller number, referred to as the panicle ratio (PR). In this study, an automatic PR estimation model (PRNet) based on a deep convolutional neural network was developed. Ultra-high-definition unmanned aerial vehicle (UAV) images were collected from cultivated rice varieties planted in 2384 experimental plots in 2019 and 2020 and in a large field in 2021. The determination coefficient between estimated PR and ground-measured PR reached 0.935, and the root mean square error values for the estimations of the heading date and effective tiller percentage were 0.687 d and 4.84%, respectively. Based on the analysis of the results, various factors affecting PR estimation and strategies for improving PR estimation accuracy were investigated. The satisfactory results obtained in this study demonstrate the feasibility of using UAVs and deep learning techniques to replace ground-based manual methods to accurately extract phenotypic information of crop micro targets (such as grains per panicle, panicle flowering, etc.) for rice and potentially for other cereal crops in future research 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Deep convolutional neural network 
650 4 |a effective tiller percentage 
650 4 |a heading date 
650 4 |a rice panicle ratio network 
650 4 |a ultra-high-definition image 
650 4 |a unmanned aerial vehicle 
700 1 |a Yang, Chenghai  |e verfasserin  |4 aut 
700 1 |a Yang, Wangnen  |e verfasserin  |4 aut 
700 1 |a Chen, Guoxing  |e verfasserin  |4 aut 
700 1 |a Jiang, Zhao  |e verfasserin  |4 aut 
700 1 |a Wang, Botao  |e verfasserin  |4 aut 
700 1 |a Zhang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 73(2022), 19 vom: 02. Nov., Seite 6575-6588  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:73  |g year:2022  |g number:19  |g day:02  |g month:11  |g pages:6575-6588 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erac294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 73  |j 2022  |e 19  |b 02  |c 11  |h 6575-6588