Composition Engineering of Amorphous Nickel Boride Nanoarchitectures Enabling Highly Efficient Electrosynthesis of Hydrogen Peroxide

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 32 vom: 06. Aug., Seite e2202995
1. Verfasser: Wu, Jie (VerfasserIn)
Weitere Verfasser: Hou, Meilin, Chen, Ziliang, Hao, Weiju, Pan, Xuelei, Yang, Hongyuan, Cen, Wanglai, Liu, Yang, Huang, Hui, Menezes, Prashanth W, Kang, Zhenhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article amorphous phase charge transfer electronic structure hydrogen peroxide oxygen reduction reaction
Beschreibung
Zusammenfassung:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Developing advanced electrocatalysts with exceptional two electron (2e- ) selectivity, activity, and stability is crucial for driving the oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2 O2 ). Herein, a composition engineering strategy is proposed to flexibly regulate the intrinsic activity of amorphous nickel boride nanoarchitectures for efficient 2e- ORR by oriented reduction of Ni2+ with different amounts of BH4 - . Among borides, the amorphous NiB2 delivers the 2e- selectivity close to 99% at 0.4 V and over 93% in a wide potential range, together with a negligible activity decay under prolonged time. Notably, an ultrahigh H2 O2 production rate of 4.753 mol gcat -1 h-1 is achieved upon assembling NiB2 in the practical gas diffusion electrode. The combination of X-ray absorption and in situ Raman spectroscopy, as well as transient photovoltage measurements with density functional theory, unequivocally reveal that the atomic ratio between Ni and B induces the local electronic structure diversity, allowing optimization of the adsorption energy of Ni toward *OOH and reducing of the interfacial charge-transfer kinetics to preserve the OO bond
Beschreibung:Date Revised 10.08.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202202995