Machine Learning of Microscopic Ingredients for Graphene Oxide/Cellulose Interaction

Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 38(2022), 3 vom: 25. Jan., Seite 1124-1130
1. Verfasser: Petry, Romana (VerfasserIn)
Weitere Verfasser: Silvestre, Gustavo H, Focassio, Bruno, Crasto de Lima, Felipe, Miwa, Roberto H, Fazzio, Adalberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't graphene oxide Graphite 7782-42-5 Cellulose 9004-34-6
LEADER 01000naa a22002652 4500
001 NLM335618103
003 DE-627
005 20231225230247.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c02780  |2 doi 
028 5 2 |a pubmed24n1118.xml 
035 |a (DE-627)NLM335618103 
035 |a (NLM)35026945 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Petry, Romana  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning of Microscopic Ingredients for Graphene Oxide/Cellulose Interaction 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.02.2022 
500 |a Date Revised 01.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations and machine learning algorithms. We were able to classify the systems among two classes with higher and lower binding energies, which are well defined based on the isolated graphene oxide features. Using theoretical X-ray photoelectron spectroscopy analysis, we show the extraction of these relevant features. In addition, we demonstrate the possibility of refined control within a machine learning regression between the binding energy values and the system's characteristics. Our work presents a guiding map to control graphene oxide/cellulose interaction 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a graphene oxide  |2 NLM 
650 7 |a Graphite  |2 NLM 
650 7 |a 7782-42-5  |2 NLM 
650 7 |a Cellulose  |2 NLM 
650 7 |a 9004-34-6  |2 NLM 
700 1 |a Silvestre, Gustavo H  |e verfasserin  |4 aut 
700 1 |a Focassio, Bruno  |e verfasserin  |4 aut 
700 1 |a Crasto de Lima, Felipe  |e verfasserin  |4 aut 
700 1 |a Miwa, Roberto H  |e verfasserin  |4 aut 
700 1 |a Fazzio, Adalberto  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 38(2022), 3 vom: 25. Jan., Seite 1124-1130  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:3  |g day:25  |g month:01  |g pages:1124-1130 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c02780  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 3  |b 25  |c 01  |h 1124-1130