Machine Learning of Microscopic Ingredients for Graphene Oxide/Cellulose Interaction

Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 38(2022), 3 vom: 25. Jan., Seite 1124-1130
1. Verfasser: Petry, Romana (VerfasserIn)
Weitere Verfasser: Silvestre, Gustavo H, Focassio, Bruno, Crasto de Lima, Felipe, Miwa, Roberto H, Fazzio, Adalberto
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't graphene oxide Graphite 7782-42-5 Cellulose 9004-34-6
Beschreibung
Zusammenfassung:Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations and machine learning algorithms. We were able to classify the systems among two classes with higher and lower binding energies, which are well defined based on the isolated graphene oxide features. Using theoretical X-ray photoelectron spectroscopy analysis, we show the extraction of these relevant features. In addition, we demonstrate the possibility of refined control within a machine learning regression between the binding energy values and the system's characteristics. Our work presents a guiding map to control graphene oxide/cellulose interaction
Beschreibung:Date Completed 01.02.2022
Date Revised 01.02.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c02780