In-Memory Realization of Eligibility Traces Based on Conductance Drift of Phase Change Memory for Energy-Efficient Reinforcement Learning

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 6 vom: 04. Feb., Seite e2107811
1. Verfasser: Lu, Yingming (VerfasserIn)
Weitere Verfasser: Li, Xi, Yan, Bonan, Yan, Longhao, Zhang, Teng, Song, Zhitang, Huang, Ru, Yang, Yuchao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article conductance drift eligibility trace phase change memory reinforcement learning
LEADER 01000naa a22002652 4500
001 NLM33329341X
003 DE-627
005 20231225221350.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202107811  |2 doi 
028 5 2 |a pubmed24n1110.xml 
035 |a (DE-627)NLM33329341X 
035 |a (NLM)34791712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Yingming  |e verfasserin  |4 aut 
245 1 0 |a In-Memory Realization of Eligibility Traces Based on Conductance Drift of Phase Change Memory for Energy-Efficient Reinforcement Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Wiley-VCH GmbH. 
520 |a Reinforcement learning (RL) has shown outstanding performance in handling complex tasks in recent years. Eligibility trace (ET), a fundamental and important mechanism in reinforcement learning, records critical states with attenuation and guides the update of policy, which plays a crucial role in accelerating the convergence of RL training. However, ET implementation on conventional digital computing hardware is energy hungry and restricted by the memory wall due to massive calculation of exponential decay functions. Here, in-memory realization of ET for energy-efficient reinforcement learning with outstanding performance in discrete- and continuous-state RL tasks is demonstrated. For the first time, the inherent conductance drift of phase change memory is exploited as physical decay function to realize in-memory eligibility trace, demonstrating excellent performance during RL training in various tasks. The spontaneous in-memory decay computing and storage of policy in the same phase change memory give rise to significantly enhanced energy efficiency compared with traditional graphics processing unit platforms. This work therefore provides a holistic energy and hardware efficient method for both training and inference of reinforcement learning 
650 4 |a Journal Article 
650 4 |a conductance drift 
650 4 |a eligibility trace 
650 4 |a phase change memory 
650 4 |a reinforcement learning 
700 1 |a Li, Xi  |e verfasserin  |4 aut 
700 1 |a Yan, Bonan  |e verfasserin  |4 aut 
700 1 |a Yan, Longhao  |e verfasserin  |4 aut 
700 1 |a Zhang, Teng  |e verfasserin  |4 aut 
700 1 |a Song, Zhitang  |e verfasserin  |4 aut 
700 1 |a Huang, Ru  |e verfasserin  |4 aut 
700 1 |a Yang, Yuchao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 6 vom: 04. Feb., Seite e2107811  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:6  |g day:04  |g month:02  |g pages:e2107811 
856 4 0 |u http://dx.doi.org/10.1002/adma.202107811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 6  |b 04  |c 02  |h e2107811