Designing a Zn-Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 1 vom: 19. Jan., Seite e2103963
1. Verfasser: Lamaison, Sarah (VerfasserIn)
Weitere Verfasser: Wakerley, David, Kracke, Frauke, Moore, Thomas, Zhou, Lan, Lee, Dong Un, Wang, Lei, Hubert, McKenzie A, Aviles Acosta, Jaime E, Gregoire, John M, Duoss, Eric B, Baker, Sarah, Beck, Victor A, Spormann, Alfred M, Fontecave, Marc, Hahn, Christopher, Jaramillo, Thomas F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon dioxide conversion carbon monoxide gas diffusion electrodes mass activities membrane electrode assemblies microbial coupling multiphysics models
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
CO2 emissions can be transformed into high-added-value commodities through CO2 electrocatalysis; however, efficient low-cost electrocatalysts are needed for global scale-up. Inspired by other emerging technologies, the authors report the development of a gas diffusion electrode containing highly dispersed Ag sites in a low-cost Zn matrix. This catalyst shows unprecedented Ag mass activity for CO production: -614 mA cm-2 at 0.17 mg of Ag. Subsequent electrolyte engineering demonstrates that halide anions can further improve stability and activity of the Zn-Ag catalyst, outperforming pure Ag and Au. Membrane electrode assemblies are constructed and coupled to a microbial process that converts the CO to acetate and ethanol. Combined, these concepts present pathways to design catalysts and systems for CO2 conversion toward sought-after products
Beschreibung:Date Revised 07.01.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202103963