Wafer-Scale Functional Metasurfaces for Mid-Infrared Photonics and Biosensing

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 43 vom: 30. Okt., Seite e2102232
1. Verfasser: Leitis, Aleksandrs (VerfasserIn)
Weitere Verfasser: Tseng, Ming Lun, John-Herpin, Aurelian, Kivshar, Yuri S, Altug, Hatice
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article CMOS compatibility biosensing deep ultraviolet lithography free-standing membranes high-throughput fabrication metasurfaces wavefront and polarization control Aluminum CPD4NFA903
Beschreibung
Zusammenfassung:© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Metasurfaces have emerged as a breakthrough platform for manipulating light at the nanoscale and enabling on-demand optical functionalities for next-generation biosensing, imaging, and light-generating photonic devices. However, translating this technology to practical applications requires low-cost and high-throughput fabrication methods. Due to the limited choice of materials with suitable optical properties, it is particularly challenging to produce metasurfaces for the technologically relevant mid-infrared spectral range. These constraints are overcome by realizing functional metasurfaces on almost completely transparent free-standing metal-oxide membranes. A versatile nanofabrication process is developed and implemented for highly efficient dielectric and plasmonic mid-infrared metasurfaces with wafer-scale and complementary metal-oxide-semiconductor (CMOS)-compatible manufacturing techniques. The advantages of this method are revealed by demonstrating highly uniform and functional metasurfaces, including high-Q structures enabling fine spectral selectivity, large-area metalenses with diffraction-limited focusing capabilities, and birefringent metasurfaces providing polarization control at record-high conversion efficiencies.  Aluminum plasmonic devices and their integration into microfluidics for real-time and label-free mid-infrared biosensing of proteins and lipid vesicles are further demonstrated. The versatility of this approach and its compatibility with mass-production processes bring infrared metasurfaces markedly closer to commercial applications, such as thermal imaging, spectroscopy, and biosensing
Beschreibung:Date Completed 24.07.2024
Date Revised 13.10.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102232