|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM329806629 |
003 |
DE-627 |
005 |
20250302100022.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202103907
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1099.xml
|
035 |
|
|
|a (DE-627)NLM329806629
|
035 |
|
|
|a (NLM)34437744
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lau, Chit Siong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Gate-Defined Quantum Confinement in CVD 2D WS2
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 23.06.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Temperature-dependent transport measurements are performed on the same set of chemical vapor deposition (CVD)-grown WS2 single- and bilayer devices before and after atomic layer deposition (ALD) of HfO2 . This isolates the influence of HfO2 deposition on low-temperature carrier transport and shows that carrier mobility is not charge impurity limited as commonly thought, but due to another important but commonly overlooked factor: interface roughness. This finding is corroborated by circular dichroic photoluminescence spectroscopy, X-ray photoemission spectroscopy, cross-sectional scanning transmission electron microscopy, carrier-transport modeling, and density functional modeling. Finally, electrostatic gate-defined quantum confinement is demonstrated using a scalable approach of large-area CVD-grown bilayer WS2 and ALD-grown HfO2 . The high dielectric constant and low leakage current enabled by HfO2 allows an estimated quantum dot size as small as 58 nm. The ability to lithographically define increasingly smaller devices is especially important for transition metal dichalcogenides due to their large effective masses, and should pave the way toward their use in quantum information processing applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Coulomb blockade
|
650 |
|
4 |
|a HfO2
|
650 |
|
4 |
|a atomic layer deposition
|
650 |
|
4 |
|a high-k dielectric
|
650 |
|
4 |
|a transition metal dichalcogenides
|
700 |
1 |
|
|a Chee, Jing Yee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Liemao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ooi, Zi-En
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tong, Shi Wun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bosman, Michel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bussolotti, Fabio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Tianqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Gang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Shuo-Wang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Tong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Teo, Siew Lang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wong, Calvin Pei Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chai, Jian Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zhong Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ang, Kah-Wee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ang, Yee Sin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Goh, Kuan Eng Johnson
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 25 vom: 26. Juni, Seite e2103907
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:25
|g day:26
|g month:06
|g pages:e2103907
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202103907
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 25
|b 26
|c 06
|h e2103907
|