Linear RGB-D SLAM for Structured Environments

We propose a new linear RGB-D simultaneous localization and mapping (SLAM) formulation by utilizing planar features of the structured environments. The key idea is to understand a given structured scene and exploit its structural regularities such as the Manhattan world. This understanding allows us...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 15. Nov., Seite 8403-8419
1. Verfasser: Joo, Kyungdon (VerfasserIn)
Weitere Verfasser: Kim, Pyojin, Hebert, Martial, Kweon, In So, Kim, Hyoun Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329713779
003 DE-627
005 20231225205722.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3106820  |2 doi 
028 5 2 |a pubmed24n1099.xml 
035 |a (DE-627)NLM329713779 
035 |a (NLM)34428135 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Joo, Kyungdon  |e verfasserin  |4 aut 
245 1 0 |a Linear RGB-D SLAM for Structured Environments 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a new linear RGB-D simultaneous localization and mapping (SLAM) formulation by utilizing planar features of the structured environments. The key idea is to understand a given structured scene and exploit its structural regularities such as the Manhattan world. This understanding allows us to decouple the camera rotation by tracking structural regularities, which makes SLAM problems free from being highly nonlinear. Additionally, it provides a simple yet effective cue for representing planar features, which leads to a linear SLAM formulation. Given an accurate camera rotation, we jointly estimate the camera translation and planar landmarks in the global planar map using a linear Kalman filter. Our linear SLAM method, called L-SLAM, can understand not only the Manhattan world but the more general scenario of the Atlanta world, which consists of a vertical direction and a set of horizontal directions orthogonal to the vertical direction. To this end, we introduce a novel tracking-by-detection scheme that infers the underlying scene structure by Atlanta representation. With efficient Atlanta representation, we formulate a unified linear SLAM framework for structured environments. We evaluate L-SLAM on a synthetic dataset and RGB-D benchmarks, demonstrating comparable performance to other state-of-the-art SLAM methods without using expensive nonlinear optimization. We assess the accuracy of L-SLAM on a practical application of augmented reality 
650 4 |a Journal Article 
700 1 |a Kim, Pyojin  |e verfasserin  |4 aut 
700 1 |a Hebert, Martial  |e verfasserin  |4 aut 
700 1 |a Kweon, In So  |e verfasserin  |4 aut 
700 1 |a Kim, Hyoun Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 15. Nov., Seite 8403-8419  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:15  |g month:11  |g pages:8403-8419 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3106820  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 15  |c 11  |h 8403-8419