|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM327179430 |
003 |
DE-627 |
005 |
20231225200213.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2021.3092570
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1090.xml
|
035 |
|
|
|a (DE-627)NLM327179430
|
035 |
|
|
|a (NLM)34170827
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xianzhi
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Rotation-Invariant Framework for Deep Point Cloud Analysis
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.10.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Li, Ruihui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Guangyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Chi-Wing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cohen-Or, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Heng, Pheng-Ann
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 28(2022), 12 vom: 25. Dez., Seite 4503-4514
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2022
|g number:12
|g day:25
|g month:12
|g pages:4503-4514
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2021.3092570
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2022
|e 12
|b 25
|c 12
|h 4503-4514
|