A Rotation-Invariant Framework for Deep Point Cloud Analysis

Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 25. Dez., Seite 4503-4514
1. Verfasser: Li, Xianzhi (VerfasserIn)
Weitere Verfasser: Li, Ruihui, Chen, Guangyong, Fu, Chi-Wing, Cohen-Or, Daniel, Heng, Pheng-Ann
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM327179430
003 DE-627
005 20231225200213.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3092570  |2 doi 
028 5 2 |a pubmed24n1090.xml 
035 |a (DE-627)NLM327179430 
035 |a (NLM)34170827 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xianzhi  |e verfasserin  |4 aut 
245 1 2 |a A Rotation-Invariant Framework for Deep Point Cloud Analysis 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs. Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure. To alleviate inevitable global information loss caused by the rotation-invariant representations, we further introduce a region relation convolution to encode local and non-local information. We evaluate our method on multiple point cloud analysis tasks, including (i) shape classification, (ii) part segmentation, and (iii) shape retrieval. Extensive experimental results show that our method achieves consistent, and also the best performance, on inputs at arbitrary orientations, compared with all the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Li, Ruihui  |e verfasserin  |4 aut 
700 1 |a Chen, Guangyong  |e verfasserin  |4 aut 
700 1 |a Fu, Chi-Wing  |e verfasserin  |4 aut 
700 1 |a Cohen-Or, Daniel  |e verfasserin  |4 aut 
700 1 |a Heng, Pheng-Ann  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 12 vom: 25. Dez., Seite 4503-4514  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:12  |g day:25  |g month:12  |g pages:4503-4514 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3092570  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 12  |b 25  |c 12  |h 4503-4514