A Rotation-Invariant Framework for Deep Point Cloud Analysis
Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 25. Dez., Seite 4503-4514
|
Auteur principal: |
Li, Xianzhi
(Auteur) |
Autres auteurs: |
Li, Ruihui,
Chen, Guangyong,
Fu, Chi-Wing,
Cohen-Or, Daniel,
Heng, Pheng-Ann |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2022
|
Accès à la collection: | IEEE transactions on visualization and computer graphics
|
Sujets: | Journal Article |