A Rotation-Invariant Framework for Deep Point Cloud Analysis

Recently, many deep neural networks were designed to process 3D point clouds, but a common drawback is that rotation invariance is not ensured, leading to poor generalization to arbitrary orientations. In this article, we introduce a new low-level purely rotation-invariant representation to replace...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 25. Dez., Seite 4503-4514
Auteur principal: Li, Xianzhi (Auteur)
Autres auteurs: Li, Ruihui, Chen, Guangyong, Fu, Chi-Wing, Cohen-Or, Daniel, Heng, Pheng-Ann
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article