|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM32430997X |
003 |
DE-627 |
005 |
20250301114913.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202008761
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1080.xml
|
035 |
|
|
|a (DE-627)NLM32430997X
|
035 |
|
|
|a (NLM)33876467
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yan, Yong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 eV in a 2D Semiconductor
|b Gallium Thiophosphate
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Exploring 2D ultrawide bandgap semiconductors (UWBSs) will be conductive to the development of next-generation nanodevices, such as deep-ultraviolet photodetectors, single-photon emitters, and high-power flexible electronic devices. However, a gap still remains between the theoretical prediction of novel 2D UWBSs and the experimental realization of the corresponding materials. The cross-substitution process is an effective way to construct novel semiconductors with the favorable parent characteristics (e.g., structure) and the better physicochemical properties (e.g., bandgap). Herein, a simple case is offered for rational design and syntheses of 2D UWBS GaPS4 by employing state-of-the-art GeS2 as a similar structural model. Benefiting from the cosubstitution of Ge with lighter Ga and P, the GaPS4 crystals exhibit sharply enlarged optical bandgaps (few-layer: 3.94 eV and monolayer: 4.50 eV) and superior detection performances with high responsivity (4.89 A W-1 ), high detectivity (1.98 × 1012 Jones), and high quantum efficiency (2.39 × 103 %) in the solar-blind ultraviolet region. Moreover, the GaPS4 -based photodetector exhibits polarization-sensitive photoresponse with a linear dichroic ratio of 1.85 at 254 nm, benefitting from its in-plane structural anisotropy. These results provide a pathway for the discovery and fabrication of 2D UWBS anisotropic materials, which become promising candidates for future solar-blind ultraviolet and polarization-sensitive sensors
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D ultrawide bandgap semiconductors
|
650 |
|
4 |
|a GaPS4
|
650 |
|
4 |
|a in-plane anisotropy
|
650 |
|
4 |
|a solar-blind photodetection
|
700 |
1 |
|
|a Yang, Juehan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Juan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiaomei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yue-Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Congxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Zhongming
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 22 vom: 21. Juni, Seite e2008761
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:22
|g day:21
|g month:06
|g pages:e2008761
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202008761
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 22
|b 21
|c 06
|h e2008761
|