Establishment of an auxiliary diagnosis system of newborn screening for inherited metabolic diseases based on artificial intelligence technology and a clinical trial

Objective: To establish a disease risk prediction model for the newborn screening system of inherited metabolic diseases by artificial intelligence technology. Methods: This was a retrospectively study. Newborn screening data (n=5 907 547) from February 2010 to May 2019 from 31 hospitals in China an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Zhonghua er ke za zhi = Chinese journal of pediatrics. - 1960. - 59(2021), 4 vom: 02. Apr., Seite 286-293
1. Verfasser: Yang, R L (VerfasserIn)
Weitere Verfasser: Yang, Y L, Wang, T, Xu, W Z, Yu, G, Yang, J B, Sun, Q L, Gu, M S, Li, H B, Zhao, D H, Pei, J Y, Jiang, T, He, J, Zou, H, Mao, X M, Geng, G X, Qiang, R, Tian, G L, Wang, Y, Wei, H W, Zhang, X G, Wang, H, Tian, Y P, Zou, L, Kong, Y Y, Zhou, Y X, Ou, M C, Yao, Z R, Zhou, Y L, Zhu, W B, Huang, Y L, Wang, Y H, Huang, C D, Tan, Y, Li, L, Shang, Q, Zheng, H, Lyu, S L, Wang, W J, Yao, Y, Le, J, Shu, Q
Format: Online-Aufsatz
Sprache:Chinese
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Zhonghua er ke za zhi = Chinese journal of pediatrics
Schlagworte:Journal Article Randomized Controlled Trial
LEADER 01000naa a22002652 4500
001 NLM32330897X
003 DE-627
005 20231225183915.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||chi c
024 7 |a 10.3760/cma.j.cn112140-20201209-01089  |2 doi 
028 5 2 |a pubmed24n1077.xml 
035 |a (DE-627)NLM32330897X 
035 |a (NLM)33775047 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a chi 
100 1 |a Yang, R L  |e verfasserin  |4 aut 
245 1 0 |a Establishment of an auxiliary diagnosis system of newborn screening for inherited metabolic diseases based on artificial intelligence technology and a clinical trial 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2021 
500 |a Date Revised 31.05.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Objective: To establish a disease risk prediction model for the newborn screening system of inherited metabolic diseases by artificial intelligence technology. Methods: This was a retrospectively study. Newborn screening data (n=5 907 547) from February 2010 to May 2019 from 31 hospitals in China and verified data (n=3 028) from 34 hospitals of the same period were collected to establish the artificial intelligence model for the prediction of inherited metabolic diseases in neonates. The validity of the artificial intelligence disease risk prediction model was verified by 360 814 newborns' screening data from January 2018 to September 2018 through a single-blind experiment. The effectiveness of the artificial intelligence disease risk prediction model was verified by comparing the detection rate of clinically confirmed cases, the positive rate of initial screening and the positive predictive value between the clinicians and the artificial intelligence prediction model of inherited metabolic diseases. Results: A total of 3 665 697 newborns' screening data were collected including 3 019 cases' positive data to establish the 16 artificial intelligence models for 32 inherited metabolic diseases. The single-blind experiment (n=360 814) showed that 45 clinically diagnosed infants were detected by both artificial intelligence model and clinicians. A total of 2 684 cases were positive in tandem mass spectrometry screening and 1 694 cases were with high risk in artificial intelligence prediction model of inherited metabolic diseases, with the positive rates of tandem 0.74% (2 684/360 814)and 0.46% (1 694/360 814), respectively. Compared to clinicians, the positive rate of newborns was reduced by 36.89% (990/2 684) after the application of the artificial intelligence model, and the positive predictive values of clinicians and artificial intelligence prediction model of inherited metabolic diseases were 1.68% (45/2 684) and 2.66% (45/1 694) respectively. Conclusion: An accurate, fast, and the lower false positive rate auxiliary diagnosis system for neonatal inherited metabolic diseases by artificial intelligence technology has been established, which may have an important clinical value 
650 4 |a Journal Article 
650 4 |a Randomized Controlled Trial 
700 1 |a Yang, Y L  |e verfasserin  |4 aut 
700 1 |a Wang, T  |e verfasserin  |4 aut 
700 1 |a Xu, W Z  |e verfasserin  |4 aut 
700 1 |a Yu, G  |e verfasserin  |4 aut 
700 1 |a Yang, J B  |e verfasserin  |4 aut 
700 1 |a Sun, Q L  |e verfasserin  |4 aut 
700 1 |a Gu, M S  |e verfasserin  |4 aut 
700 1 |a Li, H B  |e verfasserin  |4 aut 
700 1 |a Zhao, D H  |e verfasserin  |4 aut 
700 1 |a Pei, J Y  |e verfasserin  |4 aut 
700 1 |a Jiang, T  |e verfasserin  |4 aut 
700 1 |a He, J  |e verfasserin  |4 aut 
700 1 |a Zou, H  |e verfasserin  |4 aut 
700 1 |a Mao, X M  |e verfasserin  |4 aut 
700 1 |a Geng, G X  |e verfasserin  |4 aut 
700 1 |a Qiang, R  |e verfasserin  |4 aut 
700 1 |a Tian, G L  |e verfasserin  |4 aut 
700 1 |a Wang, Y  |e verfasserin  |4 aut 
700 1 |a Wei, H W  |e verfasserin  |4 aut 
700 1 |a Zhang, X G  |e verfasserin  |4 aut 
700 1 |a Wang, H  |e verfasserin  |4 aut 
700 1 |a Tian, Y P  |e verfasserin  |4 aut 
700 1 |a Zou, L  |e verfasserin  |4 aut 
700 1 |a Kong, Y Y  |e verfasserin  |4 aut 
700 1 |a Zhou, Y X  |e verfasserin  |4 aut 
700 1 |a Ou, M C  |e verfasserin  |4 aut 
700 1 |a Yao, Z R  |e verfasserin  |4 aut 
700 1 |a Zhou, Y L  |e verfasserin  |4 aut 
700 1 |a Zhu, W B  |e verfasserin  |4 aut 
700 1 |a Huang, Y L  |e verfasserin  |4 aut 
700 1 |a Wang, Y H  |e verfasserin  |4 aut 
700 1 |a Huang, C D  |e verfasserin  |4 aut 
700 1 |a Tan, Y  |e verfasserin  |4 aut 
700 1 |a Li, L  |e verfasserin  |4 aut 
700 1 |a Shang, Q  |e verfasserin  |4 aut 
700 1 |a Zheng, H  |e verfasserin  |4 aut 
700 1 |a Lyu, S L  |e verfasserin  |4 aut 
700 1 |a Wang, W J  |e verfasserin  |4 aut 
700 1 |a Yao, Y  |e verfasserin  |4 aut 
700 1 |a Le, J  |e verfasserin  |4 aut 
700 1 |a Shu, Q  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Zhonghua er ke za zhi = Chinese journal of pediatrics  |d 1960  |g 59(2021), 4 vom: 02. Apr., Seite 286-293  |w (DE-627)NLM136249191  |x 0578-1310  |7 nnns 
773 1 8 |g volume:59  |g year:2021  |g number:4  |g day:02  |g month:04  |g pages:286-293 
856 4 0 |u http://dx.doi.org/10.3760/cma.j.cn112140-20201209-01089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_61 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_244 
912 |a GBV_ILN_285 
912 |a GBV_ILN_294 
912 |a GBV_ILN_350 
912 |a GBV_ILN_665 
912 |a GBV_ILN_813 
951 |a AR 
952 |d 59  |j 2021  |e 4  |b 02  |c 04  |h 286-293