|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM320113019 |
003 |
DE-627 |
005 |
20231225172902.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202007051
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1067.xml
|
035 |
|
|
|a (DE-627)NLM320113019
|
035 |
|
|
|a (NLM)33448081
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Xiankun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Hidden Vacancy Benefit in Monolayer 2D Semiconductors
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.02.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Monolayer 2D semiconductors (e.g., MoS2 ) are of considerable interest for atomically thin transistors but generally limited by insufficient carrier mobility or driving current. Minimizing the lattice defects in 2D semiconductors represents a common strategy to improve their electronic properties, but has met with limited success to date. Herein, a hidden benefit of the atomic vacancies in monolayer 2D semiconductors to push their performance limit is reported. By purposely tailoring the sulfur vacancies (SVs) to an optimum density of 4.7% in monolayer MoS2 , an unusual mobility enhancement is obtained and a record-high carrier mobility (>115 cm2 V-1 s-1 ) is achieved, realizing monolayer MoS2 transistors with an exceptional current density (>0.60 mA µm-1 ) and a record-high on/off ratio >1010 , and enabling a logic inverter with an ultrahigh voltage gain >100. The systematic transport studies reveal that the counterintuitive vacancy-enhanced transport originates from a nearest-neighbor hopping conduction model, in which an optimum SV density is essential for maximizing the charge hopping probability. Lastly, the vacancy benefit into other monolayer 2D semiconductors is further generalized; thus, a general strategy for tailoring the charge transport properties of monolayer materials is defined
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a defect engineering
|
650 |
|
4 |
|a electrical transport
|
650 |
|
4 |
|a field-effect transistors
|
650 |
|
4 |
|a monolayer MoS2
|
650 |
|
4 |
|a sulfur vacancies
|
700 |
1 |
|
|a Liao, Qingliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kang, Zhuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Baishan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xiaozhi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ou, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Jiankun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Junli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yihe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Li
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, Mengyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Huihui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Duan, Xiangfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yue
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 7 vom: 01. Feb., Seite e2007051
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:7
|g day:01
|g month:02
|g pages:e2007051
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202007051
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 7
|b 01
|c 02
|h e2007051
|