Hidden Vacancy Benefit in Monolayer 2D Semiconductors

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 7 vom: 01. Feb., Seite e2007051
1. Verfasser: Zhang, Xiankun (VerfasserIn)
Weitere Verfasser: Liao, Qingliang, Kang, Zhuo, Liu, Baishan, Liu, Xiaozhi, Ou, Yang, Xiao, Jiankun, Du, Junli, Liu, Yihe, Gao, Li, Gu, Lin, Hong, Mengyu, Yu, Huihui, Zhang, Zheng, Duan, Xiangfeng, Zhang, Yue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article defect engineering electrical transport field-effect transistors monolayer MoS2 sulfur vacancies
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Monolayer 2D semiconductors (e.g., MoS2 ) are of considerable interest for atomically thin transistors but generally limited by insufficient carrier mobility or driving current. Minimizing the lattice defects in 2D semiconductors represents a common strategy to improve their electronic properties, but has met with limited success to date. Herein, a hidden benefit of the atomic vacancies in monolayer 2D semiconductors to push their performance limit is reported. By purposely tailoring the sulfur vacancies (SVs) to an optimum density of 4.7% in monolayer MoS2 , an unusual mobility enhancement is obtained and a record-high carrier mobility (>115 cm2 V-1 s-1 ) is achieved, realizing monolayer MoS2 transistors with an exceptional current density (>0.60 mA µm-1 ) and a record-high on/off ratio >1010 , and enabling a logic inverter with an ultrahigh voltage gain >100. The systematic transport studies reveal that the counterintuitive vacancy-enhanced transport originates from a nearest-neighbor hopping conduction model, in which an optimum SV density is essential for maximizing the charge hopping probability. Lastly, the vacancy benefit into other monolayer 2D semiconductors is further generalized; thus, a general strategy for tailoring the charge transport properties of monolayer materials is defined
Beschreibung:Date Revised 17.02.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202007051