|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM316441597 |
003 |
DE-627 |
005 |
20231225161105.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2020.3032010
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1054.xml
|
035 |
|
|
|a (DE-627)NLM316441597
|
035 |
|
|
|a (NLM)33074802
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Toft, Carl
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Long-Term Visual Localization Revisited
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 28.03.2022
|
500 |
|
|
|a Date Revised 01.04.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing conditions, including day-night changes, as well as weather and seasonal variations, while providing highly accurate six degree-of-freedom (6DOF) camera pose estimates. In this paper, we extend three publicly available datasets containing images captured under a wide variety of viewing conditions, but lacking camera pose information, with ground truth pose information, making evaluation of the impact of various factors on 6DOF camera pose estimation accuracy possible. We also discuss the performance of state-of-the-art localization approaches on these datasets. Additionally, we release around half of the poses for all conditions, and keep the remaining half private as a test set, in the hopes that this will stimulate research on long-term visual localization, learned local image features, and related research areas. Our datasets are available at visuallocalization.net, where we are also hosting a benchmarking server for automatic evaluation of results on the test set. The presented state-of-the-art results are to a large degree based on submissions to our server
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Maddern, Will
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Torii, Akihiko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hammarstrand, Lars
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stenborg, Erik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Safari, Daniel
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Okutomi, Masatoshi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pollefeys, Marc
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sivic, Josef
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pajdla, Tomas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kahl, Fredrik
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sattler, Torsten
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 4 vom: 28. Apr., Seite 2074-2088
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:4
|g day:28
|g month:04
|g pages:2074-2088
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2020.3032010
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 4
|b 28
|c 04
|h 2074-2088
|