Automated conservation assessment of the orchid family with deep learning

© 2020 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1989. - 35(2021), 3 vom: 01. Juni, Seite 897-908
1. Verfasser: Zizka, Alexander (VerfasserIn)
Weitere Verfasser: Silvestro, Daniele, Vitt, Pati, Knight, Tiffany M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't IUC-NN IUCN Red List Lista Roja UICN Orchidaceae aprendizaje mecánico biodiversidad biodiversity calidad de datos mehr... data quality machine learning sampling bias sesgo de muestreo
LEADER 01000caa a22002652c 4500
001 NLM31414840X
003 DE-627
005 20250227205219.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.13616  |2 doi 
028 5 2 |a pubmed25n1046.xml 
035 |a (DE-627)NLM31414840X 
035 |a (NLM)32841461 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zizka, Alexander  |e verfasserin  |4 aut 
245 1 0 |a Automated conservation assessment of the orchid family with deep learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.06.2021 
500 |a Date Revised 24.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2020 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 
520 |a International Union for Conservation of Nature (IUCN) Red List assessments are essential for prioritizing conservation needs but are resource intensive and therefore available only for a fraction of global species richness. Automated conservation assessments based on digitally available geographic occurrence records can be a rapid alternative, but it is unclear how reliable these assessments are. We conducted automated conservation assessments for 13,910 species (47.3% of the known species in the family) of the diverse and globally distributed orchid family (Orchidaceae), for which most species (13,049) were previously unassessed by IUCN. We used a novel method based on a deep neural network (IUC-NN). We identified 4,342 orchid species (31.2% of the evaluated species) as possibly threatened with extinction (equivalent to IUCN categories critically endangered [CR], endangered [EN], or vulnerable [VU]) and Madagascar, East Africa, Southeast Asia, and several oceanic islands as priority areas for orchid conservation. Orchidaceae provided a model with which to test the sensitivity of automated assessment methods to problems with data availability, data quality, and geographic sampling bias. The IUC-NN identified possibly threatened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias relative to the IUCN Red List and was robust even when data availability was low and there were geographic errors in the input data. Overall, our results demonstrate that automated assessments have an important role to play in identifying species at the greatest risk of extinction 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a IUC-NN 
650 4 |a IUCN Red List 
650 4 |a Lista Roja UICN 
650 4 |a Orchidaceae 
650 4 |a aprendizaje mecánico 
650 4 |a biodiversidad 
650 4 |a biodiversity 
650 4 |a calidad de datos 
650 4 |a data quality 
650 4 |a machine learning 
650 4 |a sampling bias 
650 4 |a sesgo de muestreo 
700 1 |a Silvestro, Daniele  |e verfasserin  |4 aut 
700 1 |a Vitt, Pati  |e verfasserin  |4 aut 
700 1 |a Knight, Tiffany M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1989  |g 35(2021), 3 vom: 01. Juni, Seite 897-908  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnas 
773 1 8 |g volume:35  |g year:2021  |g number:3  |g day:01  |g month:06  |g pages:897-908 
856 4 0 |u http://dx.doi.org/10.1111/cobi.13616  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2021  |e 3  |b 01  |c 06  |h 897-908